Gloucester City Council
Strategic Flood Risk Assessment for
Local Development Framework
Level 1
Volume 1 - FINAL
September 2008

Halcrow Group Limited
Gloucester City Council
Strategic Flood Risk Assessment for Local Development Framework
Level 1 – FINAL
Volume 1

Contents Amendment Record
This report has been issued and amended as follows:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Revision</th>
<th>Description</th>
<th>Date</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Draft Report</td>
<td>25/04/08</td>
<td>RD</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Final Report</td>
<td>22/08/09</td>
<td>RD</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Final Report</td>
<td>23/09/08</td>
<td>RD</td>
</tr>
</tbody>
</table>

Prepared by: Caroline Mills & Beccy Dunn

Checked by: Beccy Dunn & Environment Agency (West Area, Midlands Region)

Approved by: Shirel Saranga & Environment Agency (West Area, Midlands Region)
This page is left intentionally blank
Contents

Contents...2
List of Tables & Figures ...6
Executive Summary...8
1 **Introduction**..10
 1.1 Terms of Reference ..10
 1.2 Project Aims ...10
 1.3 Project Objectives ..10
 1.4 Project Deliverables ..11
 1.5 Outcomes of the SFRA Process ...11
 1.6 SFRA Context ..14
 1.7 The Study Area ...15
 1.8 Main Rivers, Hydrology, Geology and Topography ..16
 1.9 Key Recommendations: Chapter One ..22
2 **Study Methodology** ..24
 2.1 Level 1 SFRA Methodology ...24
 2.2 Need for a Level 2 SFRA ..25
 2.3 Technical Background ..25
 2.4 Environment Agency Flood Zone Maps ..26
 2.5 Key Recommendations: Chapter Two ...27
3 **Planning Context** ..28
 3.1 Introduction ...28
 3.2 Planning Policy Framework ...28
 3.3 National Planning Policy ...28
 3.4 Regional Planning Policy ...30
 3.5 Local Planning Policy ...34
 3.6 Key Recommendations: Chapter Three ..36
4 **Data Collection and Review** ..38
 4.1 Overview of Flooding Sources ...38
 4.2 Approach to Data Gathering ..38
 4.3 The Pitt Review ...38
 4.4 Findings of the Regional Flood Risk Appraisal ...39
 4.5 Historical Flooding ...40
 4.6 Fluvial Flood Risk in Gloucester City Council ..46
4.7 Tidal Flood Risk in Gloucester City
4.8 Issues With Existing Flood Maps
4.9 Flooding from Other Sources
4.10 Flooding from Artificial Drainage Systems (Sewers)
4.11 Flooding from Surface Water
4.12 Flooding from Impounded Water Bodies
4.13 Flooding from Groundwater
4.14 Key Recommendations: Chapter Four

5 Strategic Flood Risk Mapping
5.1 Strategic Flood Risk Maps
5.2 Hydraulic (River) Models
5.3 Sewer Flooding
5.4 Flooding from Surface Water, Impounded Water Bodies and Groundwater
5.5 Climate Change
5.6 Key Recommendations: Chapter Five

6 Flood Warning Systems and Flood Risk Management Measures
6.1 Flood Risk Management
6.2 Catchment Flood Management Plans
6.3 Shoreline Management Plans
6.4 Flood Risk Management Strategies
6.5 Summary of Environment Agency Policies and Options
6.6 Flood Defences
6.7 Culverts
6.8 Storage Areas
6.9 Residual Risk
6.10 Existing Flood Warning System
6.11 Flood Response Plan
6.12 Key Recommendations: Chapter Six

7 Flood Risk Management Policy Considerations
7.1 Overview
7.2 Policy Considerations
7.3 Development Control Policies
7.4 Council Specific Policy Issues
7.5 Sensitive Development Locations
Strategic Flood Risk Assessment

Gloucester City Council

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8</td>
<td>Recommendations: Emergency Planning</td>
<td>120</td>
</tr>
<tr>
<td>11.9</td>
<td>Recommendations: General</td>
<td>120</td>
</tr>
<tr>
<td>11.10</td>
<td>Recommendations: Future Updates to the SFRA</td>
<td>121</td>
</tr>
<tr>
<td>11.11</td>
<td>Recommendations: Next Stage of Work</td>
<td>121</td>
</tr>
<tr>
<td>11.12</td>
<td>Recommendations: Level 2 SFRA</td>
<td>122</td>
</tr>
<tr>
<td>12</td>
<td>Glossary</td>
<td>124</td>
</tr>
<tr>
<td>13</td>
<td>References</td>
<td>130</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>APPENDIX E</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>APPENDIX F</td>
<td></td>
<td>142</td>
</tr>
</tbody>
</table>
List of Tables & Figures

Tables

Table 1.1: Flood Risk Vulnerability and Flood Zone ‘Compatibility’ (Table D3 of PPS25) 12
Table 1.2: Flood Risk Vulnerability Classification (Table D2 of PPS25).. 13
Table 1.3: Main rivers in the administrative area of Gloucester and associated catchment descriptors as per FEH Version 2 .. 18
Table 3.1 Housing requirements for the Gloucester area .. 31
Table 4.1: Historical Flooding based on the Environment Agency Historic Flood Outlines within Gloucester City Council area ..41
Table 4.2: Highest May-July rainfall totals for England and Wales .. 44
Table 4.3: Properties within Flood Zone maps within the Gloucester administrative area 46
Table 4.4: Inaccuracies with Flood Maps within the Gloucester City area ... 50
Table 4.5: Flooding From Sewers as Recorded in the Severn Trent Water DG5 Register 52
Table 4.6: Reservoir Register for Gloucester City Council .. 55
Table 5.1: Environment Agency Hydraulic Models and Modelled Flood Zones within Gloucester City Council .. 62
Table 5.2: PPS25 Guidance for Changes to Flood Risk as a Result of Climate Change 65
Table 5.3: Modelled Flood Outlines used for the 1% AEP (1 in 100 year) Climate Change Scenario .. 66
Table 6.1: Environment Agency NFCDD Defences within Gloucester City Council area 76
Table 6.2: Culverted Watercourses as identified within NFCDD .. 79
Table 6.3: Flood Warning coverage within Gloucester City Council .. 83
Table 6.4: Potential impact and Likelihood of a Major Flooding Emergency affecting Gloucestershire ... 84
Table 6.5: County and District Flood Response Responsibilities ... 85

Figures

Figure 1.1: Development planning process for flood risk .. 15
Figure 3.1: Structure of the Gloucester LDF .. 34
Figure 4.1: Comparison of the position of the Jet Stream in July 2006 and July 2007 45
Figure 9.1: Guidance for developers for individual planning applications ... 103
Figure 10.1 SUDS Management Train .. 110
This page is left intentionally blank
Executive Summary

In December 2007 Gloucestershire County Council, in partnership with its Local Authorities, commissioned Halcrow to produce a Level 1 Strategic Flood Risk Assessment (SFRA) in accordance with Planning Policy Statement 25 (PPS25). The purpose of the SFRA is to assess and map all forms of flood risk from groundwater, surface water, impounded water bodies, sewer, river and tidal sources, taking into account future climate change predictions, to allow the Councils to use this as an evidence base to locate future development primarily in low flood risk areas. The outputs from the SFRA will also help the Councils to prepare sustainable policies for the long-term management of flood risk.

Flooding is a natural process which shapes the natural environment, but also threatens life and can cause substantial distress and damage to property. The effects of weather events can be increased in severity as a consequence of past decisions about the location, design and nature of development and as a consequence of climate change. While flooding cannot be wholly prevented, its impacts can be avoided and reduced through good planning and management. The SFRA aims to ensure that flood risk forms one of the material planning considerations to help deliver sustainable development.

Gloucester is drained by the River Severn, which has both tidal and fluvial influences in the area. While the Severn is capable of coming out of bank, flood risk is greatly reduced by the presence of defences. Nevertheless, the Severn contributes to flooding as the effects of high flows in the smaller streams can be worsened by the elevated levels in the Severn, causing them to back up. The effects of climate change mean that flood risk areas in Gloucester are likely to flood more frequently, though it is likely that the city will continue to be defended into the future which will mitigate future fluvial risk.

The SFRA is a tool which will inform the Council of the nature of flood risk in the area. It will provide an important part of the evidence base for the preparation of the Local Development Framework (LDF), in particular the Core Strategy. Furthermore the SFRA will provide useful information for the Sustainability Appraisal (SA) and will assist in the development of flood risk management policies. The suggested policies in the SFRA take direction from PPS25, Making Space for Water, the Water Framework Directive and Catchment Flood Management Plans (CFMPs). In Gloucester the Environment Agency will take further action to reduce flood risk. There are opportunities for the Council to assist in the reduction of risk by vigorously applying PPS25, promoting the use of SUDS and seeking opportunities for flood storage. Increased channel maintenance will reduce debris build up and help reduce incidents of blockage and resultant flooding.

In accordance with PPS25 and its Practice Guide (2006), areas of ‘low’, ‘medium’ and ‘high’ risk have been mapped using data from the Environment Agency, Gloucestershire County Council and its Local Authorities, water companies, the Highways Agency and British Waterways. This has included information on flooding from all sources and provides the basis for the Sequential Test to be applied. The Council must apply the Sequential Test to all sites within the ‘high’ and ‘medium’ risk Flood Zones. In instances where there is an area of overlap between the site boundary and flood risk area, this should be utilised as an opportunity to reduce flood risk within the site by using the flood risk areas as open space. It is important that policies recognise the positive contribution that avoidance and management of flood risk can make to the development of sustainable communities. Where the need to apply the Exception Test is identified the scope of the SFRA should be widened to a Level 2 SFRA. It is recommended that this is undertaken by a suitably qualified technical expert.

The SFRA has been reviewed and approved by the Environment Agency, and a letter which signs off the SFRA can be found in Appendix A.
This page is left intentionally blank
1 Introduction

1.1 Terms of Reference

1.1.1 In December 2007 Gloucestershire County Council, in partnership with its Local Authorities, commissioned Halcrow to produce a Level 1 Strategic Flood Risk Assessment (SFRA) in accordance with Planning Policy Statement 25 (PPS25). This report presents the findings of the SFRA for Gloucester City Council.

1.2 Project Aims

1.2.1 The aims of PPS25 planning policy on development and flood risk are to ensure that flood risk is taken into account at all stages of the planning process to avoid inappropriate development in areas at risk of flooding, and to direct development away from areas at highest risk. Where new development is necessary in such areas, exceptionally, the policy aims to make it safe without increasing flood risk elsewhere and where possible, reducing flood risk overall. ‘Safe’ in the context of this study means that dry pedestrian access to and from the development is possible without passing through the 1% AEP (1 in 100 year) plus climate change floodplain; emergency vehicular access is possible during times of flood; and the development includes flood resistance and resilience measures to ensure it is safe.

1.2.2 The aim of the SFRA therefore is to map all forms of flood risk and use this as an evidence base to locate new development primarily in low flood risk areas (Zone 1). Where development cannot be located in Flood Zone 1 the planning authority will need to apply the Sequential Test to land use allocations and, where necessary, the Exception Test (requiring a Level 2 SFRA). In addition, the SFRA allows the planning authority to:

- Prepare appropriate policies for the management of flood risk
- Inform the Sustainability Appraisal (SA) so that flood risk is taken account of, when considering options and in the preparation of strategic land use policies
- Identify the level of detail required for site-specific Flood Risk Assessments (FRAs)
- Determine the acceptability of flood risk in relation to emergency planning capability

1.2.3 The SFRA will inform the site selection process for future development sites and provide recommendations for policies to deal with non-allocated sites. The SFRA will feed into the Local Authority’s SA of the Local Development Documents (LDDs) and will enable informed decisions to be made relating to land use and development allocation within the respective Development Plan Documents (DPDs).

1.3 Project Objectives

1.3.1 Halcrow has carried out this project in accordance with the Project Brief, dated October 2007, though the methodology and deliverables have been aligned to the document “Development and Flood Risk: A Practice Guide Companion to PPS25” (2006). The SFRA has also followed advice from the Environment Agency.

1.3.2 For this study, a Level 1 SFRA approach has been agreed with the Council and the Environment Agency. A Level 1 SFRA is defined in the Practice Guide Companion to PPS25 (2006) as principally being a desk-based study using existing information to allow application of the Sequential Test on the
basis of Table D1 of PPS25 and to identify whether application of the Exception Test is likely to be necessary.

1.3.3 The best available data within the study timescale has been collected for use in this study, and the nature of the data used has been agreed with the Environment Agency, specifically Flood Zone information. It is, however, important to recognise that the SFRA is a ‘living’ document. As new information becomes available (such as improved river models) updates will be made to the Flood Zone maps and this should be reflected in the SFRA document, to ensure that the best information is used to guide the site selection process for future developments.

1.4 Project Deliverables

1.4.1 The project outputs for a Level 1 SFRA have been adopted for this study. The deliverables of this assessment are: a technical report; a summary document and a series of maps (a map index can be found in Appendix B).

1.4.2 Following the advice from Section 2.34 of the Practice Guide Companion to PPS25 (2006), the key project outputs are as follows:

1) Plans showing the administrative boundaries of the study area, watercourse centrelines, modelled watercourses, canals, defences, Areas Benefiting from Defences (ABDs) and culverted watercourse sections (Volume 2, Tiles A1-A4)

2) Strategic flood risk maps showing flooding from all sources, including fluvial Flood Zones, and areas at risk of flooding from other sources (Volume 2, Tiles B1-B4)

3) An assessment of the implications of climate change for flood risk in the study area over an appropriate time period (Volume 2, Tiles C1-C4)

4) The location of any flood risk management measures, including both infrastructure (Volume 2, Tiles A1-A4) and the coverage of flood warning systems (Volume 2, Tile F1)

5) Guidance on the application of the Sequential Test (see Chapter 8)

6) Guidance on the preparation of FRAs for development sites (see Chapter 9)

7) Guidance on the likely applicability of different Sustainable Drainage System (SUDS) techniques for managing surface water run-off at key development sites (see Chapter 10)

1.5 Outcomes of the SFRA Process

1.5.1 The Level 1 SFRA provides sufficient data and information to enable the planning authority to apply the Sequential Test to land use allocations and to therefore identify where the Exception Test needs to be applied (see sections 1.5.4 and 1.5.5 respectively).

1.5.2 PPS25 also indicates that SAs should be informed by the SFRA for their area. Under the Town and Country Planning (Local Development - England) Regulations 2004, an SA is required for all LDFs. The purpose is to promote sustainable development through better integration of sustainability considerations in the preparation and adoption of plans. The Regulations stipulate that SAs for LDFs should meet the requirements of the Strategic Environmental Assessment (SEA) Directive. An SFRA is used as a tool by a planning authority for the production of development briefs, setting constraints, identifying locations of emergency planning measures and requirements for FRAs.
1.5.3 It is important to reiterate that PPS25 should not be applied in isolation, but as part of the planning process. The formulation of Council policy and the allocation of land for future development must also meet the requirements of other planning policy. Clearly a careful balance must be sought in these instances, and the SFRA aims to assist in this process through the provision of a clear and robust evidence base upon which informed decisions can be made. Importantly, policies should recognise the positive contribution that avoidance and management of flood risk can make to the development of sustainable communities.

The Sequential Test

1.5.4 The primary objective of PPS25 is to steer development towards areas of lowest flood risk. PPS25 therefore advocates a sequential approach to guide the planning decision making process (i.e. the allocation of sites). In simple terms, this requires planners to seek to allocate sites for future development within areas of lowest flood risk in the first instance. Preference should therefore be given to locating new development in Flood Zone 1, Low Probability (see section 2.3). If there is no reasonably available site in Flood Zone 1, the flood vulnerability (see Table D3 of PPS25, below) of the proposed development can be taken into account in locating development in Flood Zone 2 (Medium Probability) and then Flood Zone 3 (High Probability). Within each Flood Zone new development should be directed away from ‘other sources’ of flood risk and towards the area of lowest probability of flooding, as indicated by the SFRA. Appendix C shows the Sequential Test process as advocated in PPS25.

1.5.5 As an integral part of the sequential approach, PPS25 stipulates permissible development types in Table D3 (flood risk vulnerability and Flood Zone ‘compatibility’). This considers both the degree of flood risk posed to the site, and the likely vulnerability of the proposed development to damage (and indeed the risk to the lives of the site tenants) should a flood occur. Provided the Sequential Test is carried out and it can be demonstrated that there are no sites available fully in Flood Zone 1, a site can be developed in accordance with Table D3 of PPS25. It is important to note that where a ‘tick’ is shown in Table D3 of PPS25, this does not imply that development may immediately proceed; the Sequential Test must still be applied and passed.

Table 1.1: Flood Risk Vulnerability and Flood Zone ‘Compatibility’ (Table D3 of PPS25)

<table>
<thead>
<tr>
<th>Flood Risk Vulnerability classification (see Table D2)</th>
<th>Essential Infrastructure</th>
<th>Water compatible</th>
<th>Highly Vulnerable</th>
<th>More Vulnerable</th>
<th>Less Vulnerable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Zone 2</td>
<td>✓</td>
<td>✓</td>
<td>Exception Test required</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Zone 3a (see Table D1)</td>
<td>Exception Test required</td>
<td>✓</td>
<td>✓</td>
<td>Exception Test required</td>
<td>✓</td>
</tr>
<tr>
<td>Zone 3b ‘Functional Floodplain’</td>
<td>Exception Test required</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Key:
✓ Development is appropriate
x Development should not be permitted
Table D2 of PPS25 (Table 1.2) classifies different types of development under different flood risk vulnerabilities, and should be used with Tables D1 and D3 in allocating development as part of the Sequential Test.

Table 1.2: Flood Risk Vulnerability Classification (Table D2 of PPS25)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential Infrastructure</td>
<td>Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk, and strategic utility infrastructure, including electricity generating power stations and grid and primary substations and chemical tank facilities</td>
</tr>
<tr>
<td>Highly Vulnerable</td>
<td>Police stations, Ambulance stations and Fire stations and Command Centres and telecommunications installations required to be operational during flooding</td>
</tr>
<tr>
<td></td>
<td>Emergency dispersal points</td>
</tr>
<tr>
<td></td>
<td>Basement dwellings</td>
</tr>
<tr>
<td></td>
<td>Caravans, mobile homes and park homes intended for permanent residential use</td>
</tr>
<tr>
<td></td>
<td>Installations requiring hazardous substances consent[1]</td>
</tr>
<tr>
<td>More Vulnerable</td>
<td>Hospitals</td>
</tr>
<tr>
<td></td>
<td>Residential institutions such as residential care homes, children’s homes, social services homes, prisons and hostels</td>
</tr>
<tr>
<td></td>
<td>Buildings used for: dwelling houses; student halls of residence; drinking establishments; nightclubs; and hotels</td>
</tr>
<tr>
<td></td>
<td>Non-residential uses for health services, nurseries and educational establishments</td>
</tr>
<tr>
<td></td>
<td>* Landfill and sites used for waste management facilities for hazardous waste[2]</td>
</tr>
<tr>
<td></td>
<td>Sites used for holiday or short-let caravans and camping, subject to specific warning and evacuation plan</td>
</tr>
<tr>
<td>Less Vulnerable</td>
<td>Buildings used for: shops; financial, professional and other services; restaurants and cafes; hot food takeaways; offices; general industry; storage and distribution; non-residential institutions not included in ‘more vulnerable’; and assembly and leisure</td>
</tr>
<tr>
<td></td>
<td>Land and buildings used for agriculture and forestry</td>
</tr>
<tr>
<td></td>
<td>Waste treatment (except landfill and hazardous waste facilities)</td>
</tr>
<tr>
<td></td>
<td>Minerals working and processing (except for sand and gravel working)</td>
</tr>
<tr>
<td></td>
<td>Water treatment plants</td>
</tr>
<tr>
<td></td>
<td>Sewage treatment plants (if adequate pollution control measures are in place)</td>
</tr>
<tr>
<td>Water-compatible Development</td>
<td>Flood control infrastructure</td>
</tr>
<tr>
<td></td>
<td>Water transmission infrastructure and pumping stations</td>
</tr>
<tr>
<td></td>
<td>Sewage transmission infrastructure and pumping stations</td>
</tr>
<tr>
<td></td>
<td>Sand and gravel workings</td>
</tr>
<tr>
<td></td>
<td>Docks, marinas and wharves</td>
</tr>
<tr>
<td></td>
<td>Navigation facilities</td>
</tr>
<tr>
<td></td>
<td>MOD defence installations</td>
</tr>
<tr>
<td></td>
<td>Ship building, repairing and dismantling, dockside fish processing and refrigeration and compatible activities requiring a waterside location</td>
</tr>
<tr>
<td></td>
<td>Water-based recreation (excluding sleeping accommodation)</td>
</tr>
<tr>
<td></td>
<td>Lifeguard and coastguard stations</td>
</tr>
<tr>
<td></td>
<td>Amenity open space, nature conservation and biodiversity, outdoor sports and recreation and essential facilities such as changing rooms</td>
</tr>
<tr>
<td></td>
<td>Essential ancillary sleeping or residential accommodation for staff required by uses in this category, subject to a specific warning and evacuation plan</td>
</tr>
</tbody>
</table>

Strategic Flood Risk Assessment

Gloucester City Council

Notes:

1) This classification is based partly on Defra/Environment Agency research on Flood risks to people (FD2321/TR2) and also on the need to keep some uses to keep functioning during flooding.

2) Buildings that combine a mixture of uses should be placed into the higher of the relevant classes of flood risk sensitivity. Developments that allow uses to be distributed over the site may fall within several classes of flood risk sensitivity.

3) The impact of a flood on the particular uses identified within this flood risk vulnerability classification will vary within each vulnerability class. Therefore, the flood risk management infrastructure and other risk mitigation measures needed to ensure the development is safe may differ between uses within a particular classification.

The Exception Test

1.5.7 If, following application of the Sequential Test, it is not possible, or consistent with wider sustainability objectives, for the development to be located in zones of lower probability of flooding, the Exception Test can be applied as indicated by Table D3 of PPS25. This test provides a method of managing flood risk while still allowing necessary development to occur.

1.5.8 The Exception Test is only appropriate for use when there are large areas in Flood Zones 2 and 3, where the Sequential Test alone cannot deliver acceptable sites, but where some continuing development is necessary for wider sustainable development reasons (the need to avoid social or economic blight and the need for essential civil infrastructure to remain operational during floods). It may also be appropriate to use it where restrictive national designations such as landscape, heritage and nature conservation designations, e.g. Areas of Outstanding Natural Beauty (AONBs), Sites of Special Scientific Interest (SSSIs) and World Heritage Sites (WHS), prevent the availability of unconstrained sites in lower risk areas.

1.5.9 For the Exception Test to be passed:
 a) It must be demonstrated that the development provides wider sustainability benefits to the community which outweigh flood risk, informed by an SFRA where one has been prepared. If the DPD has reached the ‘submission’ stage (see Figure 4 of PPS12: Local Development Frameworks) the benefits of the development should contribute to the DPDs SA process;
 b) The development should be on developable previously-developed land or, if it is not on previously developed land, that there are no reasonable alternative sites on developable previously-developed land; and,
 c) A flood risk assessment must demonstrate that the development will be safe, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall.

1.5.10 It is possible that the Council will need to apply the Exception Test if sites fall within Flood Zone 2 and 3, although it is not possible to fully determine this until the Sequential Test process has been undertaken.

1.6 SFRA Context

1.6.1 Figure 1.1, taken from the PPS25 Practice Guide (2006), illustrates the responsibilities for the production of key documents required to effectively manage flood risk through each stage of the spatial planning process, and, importantly, shows the link with other strategic documents.
1.7 The Study Area

1.7.1 Gloucester is a local government City Council covering an area of some 40.7km². The city borders the Gloucestershire Districts of Tewkesbury to the north, Stroud to the south and Forest of Dean to the west. Gloucester is predominantly urban in nature and is located on the eastern bank of the River Severn. The area is sheltered by the Cotswolds to the east, and the Forest of Dean and Malvern Hills rise predominantly to the west and north west respectively. The total estimated population of the ‘Gloucester Urban Area’ was approximately 136,203 in 2001.

1.7.2 Much of the City Centre and parts of Hempsted are designated conservation areas and include both ancient and comparatively modern structures, open spaces, gardens, parks and expanses of water (such as the Docks area and the Gloucester and Sharpness Canal).

1.7.3 Gloucester is also a port, linked via the Gloucester and Sharpness Canal to the Severn Estuary. The city is also linked to the River Avon and Stourport-on-Severn by the navigable part of the River Severn. The city is served by the Gloucester railway station, as well as the M5 motorway which runs to the east of the city. The A38 also runs north to south through the City, providing links with...
Strategic Flood Risk Assessment

Gloucester City Council

Tewkesbury and Bristol. The A40 runs west to east, connecting Gloucester with Cheltenham to the east and the Forest of Dean to the West. The A417 links Gloucester with Cirencester.

1.8 Main Rivers, Hydrology, Geology and Topography

1.8.1 The Gloucester City administrative area is generally flat and slopes gently away from the River Severn. The exception is the steep Robinswood Hill in the south east of the Council, which reaches over 100m above the rest of Gloucester. The entire Gloucester City administrative area drains into the River Severn.

1.8.2 There are eight main rivers in Gloucester, each with its own catchment. The river catchments contributing to flood risk in the Council area can be split into two categories; firstly, the Severn, with a large upstream catchment, and secondly, small catchments within the vicinity of Gloucester.

1.8.3 At the point of entry into Gloucester City, the Severn derives from a very large catchment of over 10,000km\(^2\) and is consequently subject to a great variability in flow rate. Low lying parts of the catchment fall within Flood Zone 3 (which does not take the presence of defences into account) due to the presence of the Severn. The smaller catchments also pose flood risk depending on the characteristics of any localised storms. Table 1.3 gives catchment descriptors from the Flood Estimation Handbook (FEH) for the river catchments within the Council area. Baseflow parameters (BFIHOST, baseflow index) for the smaller catchments are medium to low, while percentage runoff values (SPRHOST, standard percentage runoff) are generally medium to high, suggesting that these catchments are relatively impermeable. These parameters would indicate ‘flashy’ catchments with a relatively quick response to precipitation; a large proportion of any rain falling becomes runoff even when the soil is not saturated. The moderate values for the drainage path slope (DPSBAR, an index of catchment steepness) for these catchments indicate that topography may also contribute to rapid response times; the steeper the catchment is, the more quickly it will respond to rainfall (though this can be slowed by permeable geology and quickened by impermeable geology).

1.8.4 The majority of flood risk in the area appears to arise from the smaller catchments. While the Severn is capable of coming out of bank and flooding a large area, flood risk is reduced by the presence of defences. Nevertheless, the Severn may contribute to flooding as the effects of high flows in the smaller streams may be worsened by the elevated levels in the Severn, making it difficult for them to discharge. The main areas at risk appear to be on the Sud Brook around the Tredworth and Linden areas and on the Whaddon Brook around the Podsmead area.

1.8.5 All main rivers within the Council area are listed in Table 1.3, along with brief watercourse descriptions and eight figure grid references for clarification on locations (using standard Ordnance Survey (OS) notation). Main Rivers are watercourses shown on the statutory main river maps held by the Environment Agency and the Department for Environment, Food and Rural Affairs (also shown in Volume 2, Tiles A1-A4). The Environment Agency has permissive powers to carry out works necessary for flood defence purposes on these rivers. The overall responsibility for maintenance, however, lies with the riparian owner. Minor rivers cover every river, stream, ditch, drain, cut, dyke, sluice, sewer (other than a public sewer) and passage through which water flows and which does not form part of a main river. The local authority or Internal Drainage Board (IDB) where relevant, has powers for ordinary watercourses.

1.8.6 Geologically, the entire Council area, with the exception of Robinswood Hill, is formed from clay-like material. This means that the catchments are relatively impermeable, reflected in the generally
medium to low baseflow index values and the generally medium to high soil percentage runoff values. Solid geology and drift layers are shown in Volume 2, Tiles D1 and D2 respectively.

The Lower Severn Internal Drainage Board operates within the Gloucester City area. The IDB manages water levels at the margins of the Severn using numerous rhynes, pills and control structures.
Table 1.3: Main rivers in the administrative area of Gloucester and associated catchment descriptors as per FEH Version 2

<table>
<thead>
<tr>
<th>River Name</th>
<th>Enters Study Area</th>
<th>Exits Study Area</th>
<th>Downstream point of catchment</th>
<th>Upstream Catchment Area (km²)</th>
<th>BFIHOST</th>
<th>SPRHOST</th>
<th>DPSBAR (m/km)</th>
<th>Watercourse Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Severn</td>
<td>-</td>
<td>-</td>
<td>SO 8215 2160</td>
<td>9969.94 (very large)</td>
<td>0.512</td>
<td>35.93</td>
<td>73 (medium)</td>
<td>The River Severn is by far the largest watercourse in Gloucester and forms the Council’s western boundary from SO 8165 1967 to SO 7580 1650. All the main rivers in the area drain in a northerly or westerly direction toward the Severn. Note that the River Severn alongside Gloucester is considered as a tidal estuary and, therefore, does not have any catchment descriptors attached to it. The catchment descriptors given here are therefore those of the fluvial river at the downstream point of the fluvial catchment at SO 8215 2160. Tidal influence along the River Severn through Gloucester is significant, especially the high spring tide (the famous ‘Severn Bore’) when a sudden increase in tidal water level downstream is funnelled quickly and sometimes dramatically up the watercourse.</td>
</tr>
</tbody>
</table>

* Underneath each of the numerical parameters are written approximate classifications (‘low’, ‘medium’ or ‘high’ for example) derived from a comparison with the 943 gauged catchments which were used to produce these catchment descriptors – see Flood Estimation Handbook, Volume 5, pp.73 ff.
Upstream Catchment Descriptors* (from FEH CD ROM)

<table>
<thead>
<tr>
<th>River Name</th>
<th>Enters Study Area</th>
<th>Exits Study Area</th>
<th>Downstream point of catchment</th>
<th>Upstream Catchment Area (km²)</th>
<th>BFIHOST</th>
<th>SPRHOST</th>
<th>DPSBAR (m/km)</th>
<th>Watercourse Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsbere Brook</td>
<td>SO 8768 1768</td>
<td>SO 8494 2066</td>
<td>SO 8494 2066</td>
<td>18.71 (medium)</td>
<td>0.473</td>
<td>36.6</td>
<td>85.7 (medium)</td>
<td>Horsbere Brook originates as a number of small streams in the hills southeast of Brockworth in the Tewkesbury District. These streams unite and are considered to be a main river from SO 8918 1683 onwards. Horsbere Brook then enters Gloucester at SO 8768 1768 and flows along the north eastern edge of Hucclecote for around 1km, before flowing back into Tewkesbury District at SO 8708 1830. The Brook flows through Tewkesbury District for around 1km before rejoining the Gloucester City Council at SO 8657 1902. It then flows in a north westerly direction for 3km through Elmbridge and Longlevens before flowing into the Tewkesbury District at SO 8494 2066. Runoff on this watercourse is low, indicating a slow response to rainfall.</td>
</tr>
<tr>
<td>Wotton Brook</td>
<td>SO 8743 1682</td>
<td>SO 8398 2044</td>
<td>SO 8398 2044</td>
<td>13.15 (small)</td>
<td>0.331</td>
<td>47.6</td>
<td>36.0 (low)</td>
<td>Wotton Brook begins as a minor river at SO 8858 1479, north west of Brockworth Wood in Tewkesbury District. It becomes a main river at the same time as it enters Gloucester at around SO 8743 1682. It flows through Hucclecote and Bamwood for 3km, and is joined by an unnamed main river at SO 8503 1820. It then flows for a further 2.5km through Elmbridge, Wotton and Longlevens before leaving Gloucester at SO 8398 2044. Runoff is high given the impermeable nature of the catchment, though the catchment’s response to rainfall is slowed by the gentle slope of the catchment.</td>
</tr>
</tbody>
</table>
Upstream Catchment Descriptors*

(from FEH CD ROM)

<table>
<thead>
<tr>
<th>River Name</th>
<th>Enters Study Area</th>
<th>Exits Study Area</th>
<th>Downstream point of catchment</th>
<th>Upstream Catchment Area (km²)</th>
<th>BFIHOST</th>
<th>SPRHOST</th>
<th>DPSBAR (m/km)</th>
<th>Watercourse Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Twyver</td>
<td>-</td>
<td>-</td>
<td>SO 8584 1620</td>
<td>7.56 (small)</td>
<td>0.622 (high)</td>
<td>28.3 (medium)</td>
<td>111.9 (high)</td>
<td>The River Twyver and Sud Brook are two watercourses which are interconnected at Saintbridge Pond (SO 8495 1667). They begin as minor streams in the steep hills east of Upton St Leonards in Stroud District, and are classified as main rivers from where they cross into Gloucester City Council (SO 8630 1550 and SO 8590 1480). They then meet at Saintbridge pond (SO 8495 1667). Both then flow northwes, the Twyver flowing into the Severn at SO 8240 1950 and the Sud Brook into the Gloucester and Sharpness canal at SO 8249 1790. Catchment descriptors for the Twyver and Sud Brook are obtained before they flow into Saintbridge Pond, due to the facts that the Twyver no longer follows its original course after this point, and that there is interconnection between the two rivers.</td>
</tr>
<tr>
<td>Sud Brook</td>
<td>-</td>
<td>-</td>
<td>SO 8499 1657</td>
<td>3.48 (very small)</td>
<td>0.32 (low)</td>
<td>41.8 (high)</td>
<td>67.1 (medium)</td>
<td>Whaddon Brook begins as an unnamed minor river in Gloucester around 1km east of Whaddon, at SO 8472 1367. However, it only remains in Gloucester for around 200m before flowing into Stroud District at SO 8452 1368. It then remains in Stroud District for 1km before joining the line of the Gloucester/Stroud District boundary at SO 8353 1420. It leaves this boundary after 700m, flowing into the Stroud District at SO 8302 1414, at which point it is classified as a main river. It then flows through the Lower Tuffley area of Gloucester City for 2km and flows into the Gloucester and Sharpness Canal at around SO 8149 1565. Runoff in this catchment is fairly high.</td>
</tr>
<tr>
<td>Whaddon Brook</td>
<td>-</td>
<td>-</td>
<td>SO 8149 1565</td>
<td>3.93 (very small)</td>
<td>0.325 (low)</td>
<td>43.7 (high)</td>
<td>64.8 (medium)</td>
<td>Whaddon Brook begins as an unnamed minor river in Gloucester around 1km east of Whaddon, at SO 8472 1367. However, it only remains in Gloucester for around 200m before flowing into Stroud District at SO 8452 1368. It then remains in Stroud District for 1km before joining the line of the Gloucester/Stroud District boundary at SO 8353 1420. It leaves this boundary after 700m, flowing into the Stroud District at SO 8302 1414, at which point it is classified as a main river. It then flows through the Lower Tuffley area of Gloucester City for 2km and flows into the Gloucester and Sharpness Canal at around SO 8149 1565. Runoff in this catchment is fairly high.</td>
</tr>
</tbody>
</table>
Upstream Catchment Descriptors*
(from FEH CD ROM)

<table>
<thead>
<tr>
<th>River Name</th>
<th>Enters Study Area</th>
<th>Exits Study Area</th>
<th>Downstream point of catchment</th>
<th>Upstream Catchment Area (km²)</th>
<th>BFIHOST</th>
<th>SPRHOST</th>
<th>DPSBAR (m/km)</th>
<th>Watercourse Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniels Brook</td>
<td>SO 8251 1362 (from Stroud District)</td>
<td>-</td>
<td>SO 8135 1546</td>
<td>12.56 (small)</td>
<td>0.543</td>
<td>31.7</td>
<td>86.5 (medium)</td>
<td>Daniels Brook begins as a branching network of small streams classified as minor rivers around Brookthorpe in Stroud District. These flow in a general north western direction and join near the Gloucester/Stroud District boundary. The Brook then flows along this boundary for a very short distance (around 100m) before shifting solely into Gloucester City Council at SO 8241 1370. At this point it is classed as a Main River. It then flows north west through Lower Tuffley and Quedgeley for some 2km before flowing into the Gloucester and Sharpness Canal at SO 8241 1370.</td>
</tr>
<tr>
<td>Dimore Brook</td>
<td>-</td>
<td>SO 7935 1461 (into Stroud District)</td>
<td>SO 7935 1461</td>
<td>4.7 (very small)</td>
<td>0.389</td>
<td>44.2</td>
<td>19.5 (low)</td>
<td>Dimore Brook begins as a minor river near Waterwells Farm at SO 8174 1249. It is classed as a Main River 250m downstream at SO 8154 1261. After a further 1km, it follows the course of the Gloucester/Stroud District boundary from SO 8069 1306. It follows this boundary north west through Quedgeley for 1.5km before crossing the Gloucester and Sharpness Canal at SO 7955 1404. It then flows north along the District boundary for 0.7km, before transferring into Stroud District.</td>
</tr>
<tr>
<td>Matson Brook</td>
<td>-</td>
<td>-</td>
<td>SO 8466 1665</td>
<td>0.57 (very small)</td>
<td>0.291</td>
<td>42.5</td>
<td>67.7 (medium)</td>
<td>The Matson Brook forms a tributary of the River Twyver. The watercourse is designated main river for a short distance between Aycote Close (SO 8475 1639), and its confluence with the River Twyver at SO 8466 1665.</td>
</tr>
</tbody>
</table>
1.9 **Key Recommendations: Chapter One**

- The primary objective of PPS25 is to steer development towards areas of lowest flood risk (Flood Zone 1). Where development cannot be located in Flood Zone 1, the planning authority will need to apply the Sequential Test to land use allocations and, where necessary, the Exception Test (requiring a Level 2 SFRA).

- The Exception Test is only appropriate for use when there are large areas in Flood Zones 2 and 3, where some continuing development is necessary for wider sustainable development reasons or where restrictive national designations such as AONBs, SSSIs and WHSs prevent the availability of unconstrained sites in lower risk areas.

- To achieve safe development, dry pedestrian access to and from the development must be possible without passing through the 1% AEP (1 in 100 year) plus climate change floodplain; emergency vehicular access must be possible during times of flood; and the development must include flood resistance and resilience measures to ensure it is safe.

- The SFRA is a living document. As new flood risk information becomes available (such as updated Flood Zone information and more extensive information on flooding from other sources) it should be incorporated into the SFRA.

- The Sustainability Appraisal should be informed by the SFRA, to promote sustainable development.

- PPS25 should not be applied in isolation, but as part of the planning process. A careful balance must be struck between PPS25 and the requirements of other planning policy.

- Policies should recognise the positive contribution that avoidance and management of flood risk can make to the development of sustainable communities.
2 Study Methodology

2.1 Level 1 SFRA Methodology

2.1.1 PPS25 recommends a staged approach to SFRA, dependant on the development pressures and significance of flooding issues in the study area. The practice guide companion to PPS25 (2006) recommends that a Level 1 SFRA should principally be a desk-based study making use of existing information, to allow application of the Sequential Test and to identify where the Exception Test is likely to be necessary. The main tasks undertaken during the study were as follows:

a) Establishing relationships and understanding the planning context:

An Inception meeting was held to build relationships between the project team, the Councils and the Environment Agency. This allowed the partnering approach to form and allowed the free exchange of available information. Discussions were held on planning pressures and the status of the Councils’ LDF, to gain a clear picture of the challenges faced by the planning teams, and the various opportunities and constraints guiding the site allocation process. The study area was also discussed in detail, giving an overview of local features and flooding experienced from all sources.

b) Gathering data and analysing it for suitability:

A quality review of flood risk information was carried out by an experienced core team, who reviewed the collated data, assessed its significance and quality and advised on which data would be needed to drive the SFRA. The main approach adopted for the SFRA was to build on previous studies and existing information, supplied during the data collection phase.

c) Producing strategic flood risk maps, GIS deliverables and a technical report

A series of GIS maps were produced using the data gathered in the early phases of the study. The main mapping output is the strategic flood risk maps of the entire study area, which shows Flood Zones 1, 2 and 3 and flooding from all other sources, and should be used to carry out the Sequential Test. Other maps include study area maps showing canals and fluvial features, climate change maps showing the impacts of climate change on flood probability, geological maps, historic flood outline maps, and maps showing flood watch and warning areas. Hardcopy maps are provided in Volume 2 of the SFRA report, while GIS layers can be found in the CD at the front of this report.

d) Providing suitable guidance

Sections have been written in the report providing guidance on policy considerations, the application of the Sequential Test, guidance for the preparation of FRAs and guidance for the application of SUDS in the study area. A planning workshop has also provided further guidance on the application of the Sequential Test. This established the principles of Sequential Test, provided mock Sequential Testing scenarios and helped to develop broad policy recommendations.
2.2 Need for a Level 2 SFRA

2.2.1 Where the need to apply the Exception Test is identified, due to there being an insufficient number of suitably available sites for development within zones of lower flood risk or due to possible increases in flood risk arising from climate change, the scope of the SFRA may need to be widened to a Level 2 assessment.

2.2.2 This increased scope involves a more detailed review of flood hazard (flood probability, flood depth, flood velocity, rate of onset of flooding) taking into account the presence of flood risk management measures such as flood defences. This could include 2D modelling and breach/overtopping analysis for certain locations.

2.2.3 Level 2 SFRA outputs include:

- An appraisal of the condition of flood defence infrastructure and likely future policy
- An appraisal of the probability and consequence of breach or overtopping of flood defence infrastructure
- Maps showing distribution of flood risk across zones
- Guidance on appropriate policies for making sites which satisfy parts a) and b) of the Exception Test safe; and the requirements for satisfying part c) of the Exception Test
- Guidance on the preparation of FRAs for sites with varying flood risk across the Flood Zone

2.2.4 In general, the Level 2 SFRA should aim to provide clear guidance on appropriate risk management measures for adoption on sites within Flood Zone 3, which are protected by existing defences. This should minimise the extent to which individual developers need to undertake separate studies on the same problem. The scope of a Level 2 SFRA cannot be fully determined until the Sequential Test has been undertaken by the Council on all possible site allocations.

2.3 Technical Background

2.3.1 It is useful to gain a good understanding of Flood Zones and the approaches taken to satisfy the Level 1 SFRA requirements, using existing data.

Flood Zones

2.3.2 Flood Zones show the areas potentially at risk of flooding from rivers or the sea, ignoring the presence of defences (although areas benefiting from formal defences are identified).

2.3.3 PPS25 defines the Flood Zones as follows:

Zone 1: Low Probability

2.3.4 This zone comprises land assessed as having a less than 1 in 1000 annual probability of river or sea flooding in any year (<0.1%).
Zone 2: Medium Probability

2.3.5 This zone comprises land assessed as having between a 1 in 100 and 1 in 1000 annual probability of river flooding (1% – 0.1%) or between a 1 in 200 and 1 in 1000 annual probability of sea flooding (0.5% – 0.1%) in any year.

Zone 3a: High Probability

2.3.6 This zone comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%) or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.

Zone 3b: The Functional Floodplain

2.3.7 This zone comprises land where water has to flow or be stored in times of flood (land which would flood with an annual probability of 1 in 20 (5%) or greater in any year, or is designed to flood in an extreme (0.1%) flood, including water conveyance routes). The SFRA maps Flood Zone 3b where it has been produced. Where no modelled outlines have been produced, Flood Zone 3b has been shown to equal Flood Zone 3a.

2.3.8 It should be noted that flooding from surface water, groundwater, sewers and impounded water bodies can occur in any zone, even Flood Zone 1.

2.3.9 Flood Zone maps in the SFRA have been produced from two sources: Environment Agency Flood Map, published and updated quarterly on their website, and detailed local hydraulic modelled outlines (a list of these models can be found in Table 5.1).

2.4 Environment Agency Flood Zone Maps

2.4.1 A national flood map dataset has been produced by the Environment Agency. Most fluvial Flood Zones 2 and 3 are derived from the modelling package JFlow, which is a ‘coarse’ modelling approach (see Appendix D for further details). In many places the results of flood mapping studies have superseded the JFlow outlines. Generally these studies have included detailed hydrological research, surveyed river cross sections, and more precise digital modelling such as ISIS, TuFlow and HecRas.

2.4.2 It should be noted that not all minor watercourses have had Flood Zone maps produced for them. Only watercourses with a catchment area greater than 3km² have been modelled using JFlow software and, therefore, smaller watercourses as identified on the 10K or 25K OS maps within Flood Zone 1 may not be covered by the Environment Agency Flood Zone maps. As such, for any development site located adjacent to an unmapped watercourse within Flood Zone 1, it is recommended that an 8m development easement from the top of bank is applied, and a site specific FRA is undertaken. It should be noted that the Environment Agency is not the statutory consultee for ordinary watercourses and developers should refer to the Council’s Land Drainage departments where they exist.

2.4.3 The Environment Agency Flood Map does not show the potential impact of climate change or the functional floodplain, Flood Zone 3b, which is a recent PPS25 requirement.
2.5 **Key Recommendations: Chapter Two**

- Not all minor watercourses have had Flood Zone maps produced for them, specifically, those with a catchment area of less than 3km². These watercourses may appear to be fully in Flood Zone 1, when in reality a degree of flood risk will be posed. For any development site located adjacent to an unmapped watercourse within Flood Zone 1, an 8m development easement from the top of bank must be applied and a site specific FRA undertaken.

- The Environment Agency is not the statutory consultee for ordinary watercourses and developers should refer to the Council’s Land Drainage departments where they exist.
3 Planning Context

3.1 Introduction

3.1.1 This section provides an overview of the planning policy framework relevant to Gloucester City Council.

3.1.2 This report has been prepared in accordance with PPS25 and its Practice Guide companion (2006) and fulfils the requirements of PPS25: Development and Flood Risk. Information contained in the SFRA provides evidence to facilitate the preparation of robust policies for flood risk management, used to inform the SA of LDDs and enable informed decisions to be made relating to land use and development allocations within the respective DPDs.

3.1.3 The success of the SFRA is heavily dependent upon the Council's ability to implement the recommendations put forward for future sustainable flood risk management. It is ultimately the responsibility of the Council to establish robust policies that will ensure future sustainability with respect to flood risk.

3.2 Planning Policy Framework

3.2.1 The UK planning system has a comprehensive hierarchy of policies and plans, beginning with national guidance. This provides a policy basis for regional plans through to development plans at the local level. Development plans are intended to provide the framework for the future development of an area. They are prepared following public and stakeholder involvement and are intended to reconcile conflicts between the need for development and the need to protect the wider built and natural environment.

3.2.2 The Government is currently implementing reforms to the planning system, with Planning Policy Statements (PPS) replacing Planning Policy Guidance (PPG), Regional Spatial Strategies (RSS) replacing Regional Planning Guidance (RPG) and Local Development Frameworks (LDF) replacing Structure Plans, Local Plans and Unitary Development Plans.

3.2.3 The following paragraphs provide an overview of the relevant policy documents for the SFRA.

3.3 National Planning Policy

PPS1: Creating Sustainable Communities (2005)

3.3.1 PPS1 sets out the Government's objectives for the planning system. It confirms that good planning should deliver the development in the right place, at the right time, and protect the environment. It identifies sustainable development as the core principle underpinning planning and requires that development plans ensure it is pursued in an integrated manner.

Planning and Climate Change (Supplement to PPS1)

3.3.2 Planning and Climate Change was published in December 2007 as a supplement to Planning Policy Statement 1. The Statement requires planning authorities to tackle both the causes of climate change (reduction of green house gas emissions) and the impacts of a changing climate (flooding, habitat migration).
PPS3: Housing (2006)

3.3.3 PPS3 has been developed in response to recommendations in the Barker Review of Housing Supply (March 2004). Its principal aim is to underpin the necessary step change in housing delivery, improving the supply and affordability of housing in all communities including rural areas.

3.3.4 PPS3 states that the Government’s key housing policy goal is to ensure that everyone has the opportunity of living in a decent home, which they can afford, in a community where they want to live. The specific outcomes that the planning system should deliver in relation to housing are:

- Well designed, high quality housing that is built to a high standard
- A mix of market and affordable housing for all households in all areas
- A sufficient quantity of housing, taking into account need and demand and seeking to improve choice
- Housing developments in suitable locations offering a good range of community facilities and with good access to jobs, key services and infrastructure
- A flexible, responsive supply of land; which is used efficiently and effectively, including the use of previously developed land

3.3.5 Housing policies should help to deliver sustainable development objectives, in particular seeking to minimise environmental impact taking account of climate change and flood risk, and take into account market information, in particular housing need and demand.

PPS4: Planning for Sustainable Economic Development (Consultation Paper, 2007)

3.3.6 The new PPS on Planning for Sustainable Economic Development sets out how planning bodies should, in the wider context of delivering sustainable development, positively plan for sustainable economic growth and respond to the challenges of the global economy, in their plan policies and planning decisions.

PPS6: Planning for Town Centres (2005)

3.3.7 PPS6 sets out the Government’s policy on planning for the future of town centres.

PPS7: Sustainable Development in Rural Areas (2004)

3.3.8 PPS7 sets out the Government’s planning policies for rural areas, including country towns and villages and the wider, largely undeveloped countryside up to the fringes of larger urban areas.

3.3.9 PPS9 sets out policies on protection of biodiversity and geological conservation through the planning system. The broad aim is that development should have minimal impacts on biodiversity and geological conservation interests and enhance them where possible. Appropriate weight should be attached to the need to protect international and national designated sites.
PPS10: Planning for Sustainable Waste Management (2005)

3.3.10 PPS 10 gives criteria that must be considered in testing the suitability of sites for waste development, which includes protection of water resources; air emissions including dust; odours; and noise and vibration.

PPG15: Planning and the Historic Environment (1994)

3.3.11 PPG15 sets out policies on the protection of the historic environment and recognises that planning plays an important role in preserving built and natural heritage.

PPG17: Planning for Open Space and Recreation (2002)

3.3.12 PPG17 recognises the importance that public open spaces, green areas and recreational rights of way can play in supporting regeneration and contributing to local quality of life.

3.3.13 PPS25 sets out a plan led approach to flood risk. It confirms that all forms of flooding and their impact on the natural and built environment are material planning considerations. It clarifies the sequential approach (a process that minimises risk by directing development to areas of lowest risk), matches types of development to degrees of flood risk and strengthens the requirement to include FRAs at all levels of the planning process. Regional planning bodies and local planning authorities (LPAs) should, amongst other things, reduce flood risk by safeguarding land from development that is required for current and future flood management e.g. conveyance and storage of flood water and flood defences.

Town and Country Planning Legislative Changes

3.3.14 Amendments to the Town and Country Planning (General Development Procedure) Order 1995 came into force on 1 October 2006 introducing further requirements for LPAs to consult the Environment Agency before determining applications for development in flood risk areas.

3.3.15 The Town and Country Planning (Flooding) (England) Direction 2007 (which came into force on 1st January 2007) seeks to safeguard against inappropriate development in flood risk areas. The Direction introduces a requirement for LPAs to notify the Secretary of State of any application for major development (e.g. 10 or more dwellings) in a flood risk area which it proposes to approve against Environment Agency advice.

3.4 Regional Planning Policy

3.4.1 Regional planning policies provide the overarching framework for the preparation of the LDFs. The Draft South West Regional Spatial Strategy (RSS) provides a broad development strategy for the South West Region up to 2026. The RSS will supersede RPG 10, which was prepared in the late 1990s. The new strategy for the region is more positive, more explicit and more prescriptive regarding matters that require a strategic approach.

3.4.2 The purpose of the RSS is to provide a long term land-use and transport planning framework for the Region. It influences the future planning of the region in a number of ways:
3.4.3 When the RSS is published, countywide Structure Plans will be superseded, and their policies replaced by the RSS. Until that time, Structure Plan policies are ‘saved’ until adoption of the plan. The Gloucestershire Structure Plan Second Review policies (adopted November 1999) are currently saved.

3.4.4 The draft RSS was placed on deposit from 6th June 2006 to 30th August 2006 and following consultation period responses to the report were received from individuals, organisations, interest groups and local authorities. The South West RSS Panel team were appointed by the Secretary of State to conduct an Examination in Public (EiP) of selected issues arising out of the draft RSS. The report of the findings was published in January 2008 and recommendations of changes to the draft RSS were made. The panel stressed that as a result of their recommendations, there may be a further need to modify or delete policies and/or text throughout the Strategy as necessary. It is therefore recommended that reference to the findings of the panel report be made.

3.4.5 The Northern Sub-Region, of which Gloucestershire is part, will continue to be the main focus for growth in the South West. The area has the potential to continue as a major focus of growth and economic expansion here is likely to be above the national average. Development plans will need to identify strategic employment sites, and provision needs to be made to meet future development requirements at sustainable development locations.

3.4.6 Table 3.1 illustrates the housing requirements for the Gloucestershire put forward within the draft RSS along with the recommendations made by the South West RSS Panel team in their report:

Table 3.1: Housing requirements for the Gloucester area

<table>
<thead>
<tr>
<th>Gloucester and Cheltenham Housing Market Area</th>
<th>Draft RSS Figures</th>
<th>Panel Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheltenham</td>
<td>425</td>
<td>425</td>
</tr>
<tr>
<td>Gloucester</td>
<td>575</td>
<td>575</td>
</tr>
<tr>
<td>Tewkesbury</td>
<td>525</td>
<td>525</td>
</tr>
<tr>
<td>Cotswold</td>
<td>300</td>
<td>340</td>
</tr>
<tr>
<td>Forest of Dean</td>
<td>270</td>
<td>300</td>
</tr>
<tr>
<td>Stroud</td>
<td>335</td>
<td>435</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2430</td>
<td>2600</td>
</tr>
</tbody>
</table>
Strategic Flood Risk Assessment

Gloucester City Council

Relevant RSS Policies

3.4.7 Four high level Sustainable Development Policies (SD1 to SD4) are put forward in the RSS which set the broad sustainability context for the RSS, aiming to make future development and lifestyle choices in the region more sustainable. The points relevant to the SFRA are as follows:

- SD1 states that the region’s Ecological Footprint will be stabilised and then reduced by ensuring that development respects environmental limits;
- SD2 states that the region will adapt to the anticipated changes of climate change by avoiding the need for development in flood risk areas and incorporating measures in design and construction to reduce the effects of flooding
- SD4 states that growth and development will be planned for and managed positively to create and maintain Sustainable Communities throughout the Region by providing networks of accessible green space for people to enjoy [these can also be utilised as flood storage areas which can provide a positive reduction to flood risk]

3.4.8 These policies, and an assessment of contextual evidence, leads to a Spatial Strategy for the region, which will provide the most sustainable way of dealing with change and pressure for development, while addressing some of the region’s major challenges. The Spatial Strategy for the South West is based on recognition of the diverse needs and potential for change of different places and parts of the region. Development will be planned to meet the needs of all communities and to realise their potential within environmental limits.

3.4.9 What follows are sub-regional expressions of SD1 to SD4 in spatial policy and development terms. The varied characteristics of the region mean the Spatial Strategy has three distinct emphases. The RSS presents more locationally specific policies grouped within each of the three distinct Strategy Emphases. Gloucestershire falls in the ‘north and centre of the region’ grouping. SR1 states that:

“In the north and central part of the region, the strategic emphasis is to realise economic potential by enabling the Strategically Significant Cities and Towns (SSCTs) [Cheltenham and Gloucester in the SFRA study area] to develop, maintain and improve their roles as service and employment centres, with a view to enhancing regional prosperity and addressing regeneration. Sufficient housing will be provided to complement this role and to meet the needs of a growing population”.

3.4.10 Chapter 7 of the RSS discusses ‘enhancing distinctive environments and cultural life’, in which it puts forward Policy F1 - Flood Risk:

“Taking account of climate change and the increasing risk of coastal and river flooding, the priority is to:

- Defend existing properties and, where possible, locate new development in places with little or no risk of flooding
- Protect floodplains and land liable to tidal and coastal flooding from development
- Follow a sequential approach to development in flood risk areas
- Use development to reduce the risk of flooding through location, layout and design
Strategic Flood Risk Assessment

Gloucester City Council

- Relocate existing development from areas of the coast at risk, which cannot be realistically defended
- Identify areas of opportunity for managed realignment to reduce the risk of flooding and create new wildlife areas

3.4.11 The RSS states that in implementing Policy F1, LDDs will need to:

- Require SFRAs to guide development away from floodplains, areas at risk or likely to be at risk in the future from flooding, or where development would increase the risk of flooding elsewhere
- Ensure that the location of new development is compatible with relevant Shoreline Management Plans (SMPs) and River Basin Management Plans (RBMPs) and other existing relevant strategies, and takes account of the Environment Agency’s Flood Map
- Seek to reduce the causes of flooding by requiring that all developments and, where subject to planning control, all land uses (including agricultural activities changes to drainage in existing settlements) should not add to the risk of flooding elsewhere and should reduce flooding pressures using appropriate SUDS techniques
- Require that all developments on the perimeter of towns and villages take account of local flooding risks from agricultural run-off
- Ensure that development proposals do not prejudice future coastal management or the capacity of the coast to form a natural sea defence, or to adjust to changes, without endangering life or property
- Include proposals which allow for the relocation of existing development from areas of the coast at risk, which cannot be realistically defended

3.4.12 Recommended flood risk management policies, to be developed as part of the LDF, are put forward in Chapter 7. These have been developed in accordance with the above core objectives.

3.4.13 Other policies in the Draft RSS of particular relevance to this study are:

- **RE6: Water Resources.** This states that “The Region’s network of ground, surface and coastal waters and associated ecosystems will be protected and enhanced, taking account of the Environment Agency’s ‘Regional Water Resources Strategy’, catchment abstraction management strategies, groundwater vulnerability maps, groundwater source protection zone maps and river basin management plans. Surface and groundwater pollution risks must be minimised so that environmental quality standards are achieved and where possible exceeded. LPAs, through their LDDs, must ensure that rates of planned development do not exceed the capacity of existing water supply and wastewater treatment systems and do not proceed ahead of essential planned improvements to these systems”. Information on groundwater source protection zones can be found in Chapter 10.

- **Development Policy G: Sustainable Construction.** This states that “Developers, local authorities, regional agencies and others must ensure that their strategies, plans and programmes achieve best practice in sustainable construction”. This includes the point:
“Requiring the use of sustainable drainage systems to minimise flood risk associated with new developments”. Information on the use of SUDS can be found in Chapter 10, as well as in the policy recommendations in Chapter 7.

3.5 Local Planning Policy

Local Development Framework

3.5.1 The reforms to the planning system mean that the LPA will gradually depart from the Local Plan and create new planning policies within the new planning system, known as the LDF. The LDF will deliver the vision of the RSS, at the local level. Unlike its predecessors such as the Local Plan or Structure Plan, the LDF is not a single document but rather a ‘folder’ into which a series of documents are placed. This flexible approach enables some aspects of the framework to be revised quickly in response to changing circumstances, whilst leaving others to endure for the longer term. The composite documents (the LDDs) have different purposes, some used to guide and others to inform.

3.5.2 In 2004, following the introduction of the Planning and Compulsory Purchase Act, Gloucester City Council decided to halt any further progress with the draft Local Plan and to instead start preparation on the LDF. With effect from 27th September 2007, of the 190 policies contained in the 1983 Local Plan, 137 have been deleted and 53 have been formally saved. The Council’s website sets out the policies that have been saved.

3.5.3 The structure of the Gloucester LDF is illustrated in Figure 3.1. There are four main DPDs: the Core Strategy, Development Control Policies, Central Area Action Plan (AAP) and Site Allocations and Designations (Non-Central Area). The most important of these is the Core Strategy which addresses key strategic issues such as the location, timing, scale and type of growth. These four main DPDs are supported by a range of Supplementary Planning Documents (SPDs) which are either topic or site-based and provide further detail on the main DPDs. Other documents within the LDF include the Local Development Scheme (LDS - the LDF timetable), the Statement of Community Involvement (SCI), which sets out how the Council will consult on the LDF, and the Annual Monitoring Report (AMR), which considers how well the LDF policies are performing.

Figure 3.1: Structure of the Gloucester LDF
In preparing the LDF, the Council is required to prepare a LDS. This is a three-year project plan setting out, in detail, how and when the Council intends to prepare the various components of its LDF. A revised Gloucester LDS was formally approved by the Government Office for the South West in June 2007. The timetable is the subject of current discussion and is subject to further change.

The SCI sets out when and how the City Council will undertake public and stakeholder consultation with regard to the LDF process and in determining significant planning applications. The SCI was approved by the Planning Inspectorate following an independent examination and formally adopted by the Council on 5th July 2005. It is the intention of the Council to review its SCI in 2008.

The Core Strategy is the most important part of the LDF, setting out the overall context for future development and growth in Gloucester. The draft strategy seeks to build on Gloucester’s strengths in order to deliver a sustainable and ongoing urban renaissance. In particular, the strategy focuses on concentrating new development into the Central Area through the regeneration of vacant and under-used previously developed land and buildings. The Core Strategy has been subjected to an Issues and Options Consultation (2005) and a Preferred Options Consultation (2006). It had been planned to repeat the preferred option consultation in March 2008 and formally submit the Core Strategy in Autumn 2008, however, the Council has now formally agreed to prepare a joint Core Strategy with Cheltenham and Tewkesbury Borough Councils.

The Central AAP will provide the detailed framework for the regeneration of the Central Area under the Gloucester Heritage Urban Regeneration Company (GHURC). It will address a wide range of issues including housing, employment, transport, leisure, shopping, and recreation. The Central AAP document has now been subjected to an Issues and Options Consultation (2005) and a Preferred Options Consultation (2006).

The Site Allocations and Designations document will address those parts of the City not covered by the GHURC AAP and will include modest allocations for new development as well as policy designations such as open space and nature conservation. This document has now been subjected to Issues and Options Consultation (October/December 2005) and Preferred Options Consultation (August/September 2006).

The Council is in the process of producing a number of topic and site-based SPDs to support the four main LDF DPDs. Site-specific ‘planning briefs’ include: Greater Greyfriars, Greater Blackfriars, Kings Square/Bus Station, Railway Corridor, Westgate Island and Quay, Land East of Waterwells Business Park and Clearwater Drive. These have been subjected to two periods of consultation, one informal and one formal and will be adopted as interim guidance by the Council in July 2008.

In terms of topic-based SPDs, the following drafts have been published to date: Affordable Housing, New Housing and Open Space, Telecommunications Development, Development Affecting Sites of Historic Environment (Archaeological) Interest, Extending Your Home, Designing Safer Places, Tall Buildings in Gloucester and Lifetime Homes.

The LDF will contain various policies and proposals that will influence the development of Gloucester in the period up to 2026. It is essential that these policies and proposals are based on robust, comprehensive and up-to-date evidence. Indeed, the SFRA forms part of this evidence base.
3.6 Key Recommendations: Chapter Three

- The success of the SFRA is heavily dependent upon the Council’s ability to implement the recommendations put forward in the SFRA for future sustainable flood risk management.

- While policy recommendations are put forward in Chapter 7, it is ultimately the responsibility of the Council to establish robust policies that will ensure future sustainability with respect to flood risk.
4 Data Collection and Review

4.1 Overview of Flooding Sources

4.1.1 Flooding can come from a variety of sources, including rivers, rainfall on the ground surface (surface water), rising groundwater, overwhelmed sewer and drainage systems and breached or overtopped reservoirs and canals. This chapter gives a strategic assessment of the risk posed to the study area from these sources.

4.2 Approach to Data Gathering

4.2.1 Throughout the data collection and review process it has been critical to make best use of the significant amount of information which already exists with respect to flood risk (held by the Councils, Environment Agency, British Waterways, the Highways Agency, Severn Trent Water, Thames Water, Wessex Water, Welsh Water, Bristol Water and IDBs). The data gathering process has resulted in a review of:

- Strategically important documents including the Regional Flood Risk Appraisal and the Pitt Review
- Historical flooding information from Environment Agency historic flood outlines and various datasets from water companies, the Councils and British Waterways, detailing flooding experienced from ‘other sources’
- Environment Agency Flood Zone maps and detailed flood risk mapping outputs, including fluvial climate change outputs
- Information on flood risk management infrastructure, including defences, culverts and structures (supported by information from the Councils and the Environment Agency’s National Flood and Coastal Defence Database (NFCDD))
- Existing flood risk management reports including Catchment Flood Management Plans (CFMPs)
- Environment Agency flood warning and flood watch information

4.2.2 The team has been able to review the collected data, assess its significance and quality and advise on which part of the collected data should be used for the SFRA. The main approach to the SFRA has been to build on previous studies and gathered information.

4.2.3 Consultation has formed a key part of the data gathering stage of the SFRA. The aforementioned stakeholders were consulted during the SFRA and as part of the consultation process, an Inception meeting was held to allow key stakeholders to share their experience and knowledge of flooding issues across the study area. The benefits of adopting a partnering approach (as advocated by PPS25) are significant and have helped to ensure that the findings and recommendations of the SFRA are relevant and workable for the Council.

4.3 The Pitt Review

4.3.1 Following the summer 2007 floods an independent review of the flood-related emergencies which occurred was undertaken by Sir Michael Pitt on behalf of the Government. The final report has been published and should be reviewed by the Council with appropriate action taken where the report recommends it.
4.3.2 A summary of the summer 2007 June and July 2007 events, in terms of rainfall and subsequent flooding, is summarised in Sections 4.5.8 to 4.5.20. In the main, the Pitt review has been guided by four key principles and conclusions reached, including:

- The needs of those individuals and communities who have suffered flood or are at risk
- That change will only happen with strong and more effective leadership across the board
- That we must be much clearer about who does what
- That we must be willing to work together and share information

4.3.3 These principles were translated into recommendations, which have been included in Appendix E of this report. Attention should be drawn specifically to recommendations 14, 15, 16, 17 and 19 which address the role of the Local Authority with regards to flood risk management and recommends that the Local Authority takes a lead role in the management of flood risk with the support of the relevant organisations.

4.4 Findings of the Regional Flood Risk Appraisal

4.4.1 The South West Regional Flood Risk Appraisal (RFRA) was completed in February 2007, to inform the Regional Sustainability Appraisal (RSA) as part of the RSS. It provides a broad overview of the source and significance of all types of flood risk across the region, and is used to assess and influence housing and employment as well as to identify where flood risk management measures may be functional at a regional level. The main aim of the RFRA is to direct development away from areas at highest risk of flooding.

4.4.2 The RFRA states that around 100,000 properties in the South West Region lie in Flood Zone 3. While flood defences do reduce the risk of flooding, the RFRA re-iterates that these do not eliminate the risk of flooding due to the residual risk of breach or overtopping. By their very nature, residual risks have a low probability of occurrence. However, consequences can vary from low (e.g. marginal overtopping of a flood defence wall) to high (e.g. sudden collapse of high flood defence bank, where property is close by). Residual risk tends to depend upon the extent and height of the flood defences in the locality and the density, and proximity of development relative to the defences (further details on residual risk can be found in Section 6.9). Flood risk also remains from sources including sewers, surface water and groundwater [and impounded water bodies].

4.4.3 The RFRA discusses the impact of climate change on flood risk in the South West region. This tends to focus on the concern over sea level rise and the effects this will have on the coast of the South West. The RFRA does not consider the impact of climate change on rivers as there is no data that considers these areas for the whole of the South West. The RFRA does, however, refer to Defra guidance on climate change (outlined in Table 5.2) and states that increases in river flows as a result of climate change should be assessed in site specific FRAs and detailed design. Further details of climate change within Gloucester can be found in Section 5.5.

4.4.4 An appraisal of regionally significant flood risk was carried out as part of the study, and Gloucester and Cheltenham made up one of the 9 sub-regions covered by the South West RFRA. All other areas in Gloucestershire were not assessed. A summary of the findings of the RFRA in Gloucester is below.
4.4.5 The RFRA states that the River Severn and its tributaries present flood risk to the city of Gloucester and the area to the north of the city. The area to the north of the city runs into higher ground suggesting that risks could be avoided by careful layout and the use of SUDS. Surface water flooding associated with poor urban drainage and ‘backing up’ of the system during high river flows affects Gloucester.

4.4.6 The floodplain in the Gloucester area is flat and broad. The RFRA states that this results in floodwaters extending a significant distance from the river. The RFRA estimates that approximately 3000 properties in Gloucester and the surrounding area are affected by flooding from the River Severn and its tributaries. A flood alleviation scheme at Alney Island provides protection to approximately 50 properties. Removal of a redundant railway bank has also had flood alleviation benefits, although this work was instigated as floodplain mitigation measures as part of the Gloucester South West By-Pass and Gloucester Quay development works.

4.4.7 The RFRA estimates that climate change and sea level rise will mean that a severe tidal flooding event at Gloucester will be 20 times more likely to occur by 2060 (i.e. a 1 in 200 year event will become a 1 in 10 year event). This is supported by the SFRAs findings on climate change, which can be found in Section 5.5.

4.5 Historical Flooding

4.5.1 Recent years have seen a number of large scale flood events throughout the UK including Easter and October 1998, autumn 2000, February 2002, New Year 2003, February 2004 and more recently summer 2007. The Environment Agency has produced a number of historic flood outlines within the Gloucester City area including the following events which have been mapped: January 1939, March 1947, July 1968, December 1981, January 1990, December 2000 and summer 2007. These historic flood outlines can be found in Volume 2, Tiles E1-E3, with details of the main locations affected shown in Table 4.1.

4.5.2 Sections 4.5.8 to 4.5.20 provide a detailed account of the summer 2007 floods and how the events affected the County of Gloucestershire as a whole. This event has been covered in detail because it is the most recent and memorable event to have affected the County. It should be stressed, however, that other historical events have affected the County which are just as important in obtaining an understanding of the flood risk posed to the study area. All historical flood events should also therefore be considered as part of any assessment of flood risk within the City Council area.
Table 4.1: Historical Flooding based on the Environment Agency Historic Flood Outlines within Gloucester City Council area

<table>
<thead>
<tr>
<th>Flood Event</th>
<th>Watercourse(s)</th>
<th>Description of Affected Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1939</td>
<td>River Severn, West Channel</td>
<td>Predominantly rural floodplain adjacent to the River Severn at Sud Meadow. Some industrial properties and recreational space on a Trading Estate by Sud Meadow Road.</td>
</tr>
<tr>
<td>March 1947</td>
<td>River Severn, Wotton Brook</td>
<td>One of the largest floods to affect the Council area causing serious flooding on the railway system around Gloucester including the Docks branch, which crossed a bridge across the Eastern Channel of the Severn, and Over Junction, where a bridge crossed the Western Channel. Historic flood outlines indicate the playing fields adjacent to the Wotton Brook were inundated (likely to be water backing up along the River Severn) a significant number of commercial and residential properties throughout the city areas of Longford, Kingsholm and Woodlands Park area</td>
</tr>
<tr>
<td>July 1968</td>
<td>Sud Brook & River Twyver</td>
<td>Flooding to Spa Fields adjacent to the Sud Brook. Flooding also know to have occurred along the River Twyver.</td>
</tr>
<tr>
<td>December 1981</td>
<td>River Severn</td>
<td>Small area of rural floodplain to the south of Elmore Lane West shown to be flooded. Further historic flood records report that the River Severn rose to 3m above normal levels.</td>
</tr>
<tr>
<td>January 1990</td>
<td>River Severn</td>
<td>Major floods affecting large areas of Gloucester along the River Severn</td>
</tr>
<tr>
<td>December 2000</td>
<td>River Severn</td>
<td>Large areas of floodplain adjacent to the River Severn inundated</td>
</tr>
</tbody>
</table>

4.5.3 Further details of historic flooding within the Council area have been obtained from Flood Mapping reports. Large areas of Gloucester, including Longford, were affected by flooding in 1960. In May 1979, approximately 100 homes were flooded in the city when torrential rain fell on saturated ground and the five brooks which flow through the city burst their banks. It was reported that 1.53 inches (37.5cm) of rain fell in 24 hours, causing the wettest May day since 1955. On the Nine Elms estate at Longlevens, work on the Horsbere Brook and Cheltenham road bridge improved flow, but engineers were still disappointed that there was extensive flooding. In this area, approximately 20 homes had a foot of water internally. The main trouble spots outside the city included Hucclecote, Innsworth and Brockworth, the latter constituting part of the upper catchment of Wotton Brook. In February 1995 it was reported that high tides flooded major routes near Tewkesbury and Gloucester, with hundreds of acres of farmland in the floodplain inundated by flood water.

4.5.4 Historically flooding from the River Twyver has been experienced on a number of occasions including 1968, 1997, 2001 and 2003. In general the flooding has been associated with the insufficient capacity of the city’s sewers and drains. In particular, the drainage system in the old part of the town is thought to be inadequate to cope with intense rainfall events. Localised flooding is known to have
occurred at the Rugby Club car park which is thought to be the consequence of culvert blockage. A combined sewer overflow (CSO) which discharges into the Twyver underneath Deans Way brought extra flow to an already blocked culvert and the water therefore backed up the culvert, and out into the car park\(^3\).

4.5.5 Further flooding has been recorded on the River Twyver in 1989/1990 and resulted in the use of the storage area (Saintbridge Balancing Pond) located on the right bank of the flood relief channel just upstream of the dam structure. The area is a public amenity and is currently used as playing fields. Earth embankments surround the playing fields providing a storage volume of approximately 84,000m\(^3\). It is known that this area has been fully utilised in the past with flood water, but this only occurred as a consequence of the penstock being closed. The same area also accommodates a small amount of spill from the flood relief channel a couple of times each winter during the peak of a high flow event. The channel spills across the footpath along the top of the right bank at its lowest point and the water extends approximately 9m across the playing field. During such events the water only stays for a couple of hours before subsiding. Consultation with the Environment Agency has indicated that the River Twyver storage area was flooded more recently in 2008. During the flood event, the penstock was fully operational.

4.5.6 Flooding along the Wotton Brook has also been recorded. In January 1993, the A40 and A48 were closed due to flooding, with many other roads only passable with care. Emergency services countrywide fought to stop homes being flooded and keep traffic on the move. Homes on Oxstalls Road, Longlevens and Rydal Road were surrounded by floodwater, defended only by sandbags. Front gardens were also heavily flooded. Additional areas in the Wotton Brook catchment known to have been affected by flooding in the past are Longford, Brockworth and Hucclecote.

4.5.7 Historically flooding along the River Severn Estuary has occurred since Roman times. Records indicate that flood defences were constructed in Roman times to protect newly reclaimed land from high tides. More recently, in 1981 severe flooding occurred along the Severn Estuary as a result of high tides coinciding with heavy rainfall and a high surge, with the worst affected areas at Avonmouth and Severnside (outside of the Council area). Following the 1981 flooding, the Avonmouth to Worcester Improvement scheme was commissioned by Severn Trent Water and a series of embankments and flood walls were constructed along the estuary (Section 6.2). Following the construction of the defences, the frequency and severity of flooding along the Severn Estuary has significantly reduced with more recent flooding occurring during Christmas 1999, affecting properties on the east bank. Further flooding was experienced along the estuary in November and December 2000, in the Minsterworth to Gloucester area, although this was primarily as a result of significant rainfall in the Severn catchment.

Summer 2007 Floods

4.5.8 This section gives an account of the summer 2007 floods including a timeline of events, the rainfall that was experienced and how this manifested itself as river flows and subsequent flooding. The historic flood outline of this event, which can be found in Volume 2, Tiles E1-E3, depicts the extent of the flooding. This was produced by the Environment Agency and involved the deployment of numerous survey teams to capture wrack marks and levels so that the extent of flooding could be captured. The outlines were then verified by the Environment Agency using aerial photography of the

3 Halcrow, River Twyver Strategic Flood Risk Mapping Study, 2006
event, information from the public, ground photos and information from Gloucestershire County Council. Consultation with local authorities took place for further verification. The scale of the event was unprecedented and as much data as was realistically possible was gathered. While the majority of flood affected areas were captured, some minor omissions may remain.

4.5.9 It should be noted that at this stage, the Environment Agency does not intend to change the existing Flood Zone information (as presented in Volume 2, Tiles B1-B4) in light of the summer 2007 flood events. Liaison with the Environment Agency has confirmed that this may change in the future, but until such time the latest Flood Zone information should be used to enable the Sequential Test and therefore locate future development. Where a historic flood event has affected a proposed development site, flood resistance and resilience should be incorporated into the site.

Timeline of Events

4.5.10 The 15th June 2007 marked the beginning of extreme flood events in the UK. During June, North and East Yorkshire suffered severe thunderstorms with resultant flooding, causing the fire brigade to launch ‘the biggest rescue effort in peacetime Britain’. In early July, forecasters warned of treacherous weather for the rest of July and in mid July, the Met Office issued severe weather warnings as strong winds and low pressure swept across England. On 20th July over 3 inches of rain fell in just 12 hours over much of south and south west England. Resultant severe flooding was experienced across Gloucestershire. Up to 10,000 people were left stranded on the M5 as drivers were forced to abandon cars, and 500 people were stranded at Gloucester railway station as the railway network failed. Rest centres were set up for some 2,000 people unable to travel home.

4.5.11 On 22nd July Mythe water treatment works flooded, leaving over 350,000 people without clean water for up to 17 days. Despite efforts to distribute bottled water and bowsers, the lack of water for basic daily use caused severe distress to thousands of people. Electricity supplies throughout the County were also threatened, with Walham switching station (which serves over half a million homes across Gloucestershire and South Wales) and Castle Meads electricity sub-station under threat from rising flood water. Walham switching station was protected following the mobilisation of temporary defences and temporary pumping equipment in a joint effort from the Environment Agency, British Waterways, Armed Forces, Fire and Rescue and Police Services. British Waterways lowered the Gloucester and Sharpness Canal which created sufficient capacity to enable the emergency services to pump water from the switching station in order to prevent it from flooding. However, Castle Meads sub-station had to be shut down on the 23rd July before it flooded, leaving approximately 42,000 people without power. The effects of the infrastructure failure were felt outside the flooded areas and resulted in an increase in demand for emergency responses.

4.5.12 The emergency response in the county of Gloucestershire was coordinated by the Gold Command. Rainfall, river levels and sea conditions were monitored by the Environment Agency with data used to issue flood warnings. On 27th July another heavy downpour of rain occurred, causing further localised flooding in Gloucestershire. The emotional and financial toll that the floods caused is undisputable.
4.5.13 Flooding in Gloucester in June 2007 was predominately from smaller watercourses which reacted quickly to heavy rain, giving rise to increased local runoff. Flooding from the River Severn was not significant at this time. An estimated 1,025 properties were affected, principally in the following locations: from Sandhurst to Minsterworth Ham including Hucclecote, Longford, Longlevens, Abbeydale, Quedgeley, Upton St Leonards, Tuffley, Hempsted, Alney Island, Abbeymead, the Rea, Barnwood, and Tredworth. Many properties were first flooded by surface water or by watercourses, which reacted quickly to the local run-off. Properties were subsequently flooded by the River Severn a few days later. Some of the properties in Gloucester which flooded in July had also been previously flooded following heavy rain on 25 June. Defences at Alney Island (Pool Meadow) and Llanthony as well as low level defences upstream and downstream of the city were overwhelmed as River Severn flows exceeded their design.

Rainfall Data

4.5.14 The flooding followed unprecedented rainfall; the wettest-ever May to July period since national records began in 1766. The Centre for Ecology and Hydrology\(^5\) states that May to July produced hydrological conditions with no close modern parallel for the summer period in England and Wales. Met Office records show that an average of 414mm of rain fell across England and Wales during a three month period - 228mm greater than the average May to July rainfall recorded. Table 4.2\(^6\) confirms the outstanding character of the May to July rainfall in 2007.

\textit{Table 4.2: Highest May-July rainfall totals for England and Wales}

<table>
<thead>
<tr>
<th>Rank</th>
<th>Year</th>
<th>mm</th>
<th>% of 1971 - 2000 average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2007</td>
<td>415</td>
<td>223</td>
</tr>
<tr>
<td>2</td>
<td>1789</td>
<td>349</td>
<td>187</td>
</tr>
<tr>
<td>3</td>
<td>1879</td>
<td>342</td>
<td>184</td>
</tr>
<tr>
<td>4</td>
<td>1828</td>
<td>330</td>
<td>177</td>
</tr>
<tr>
<td>5</td>
<td>1782</td>
<td>329</td>
<td>177</td>
</tr>
<tr>
<td>6</td>
<td>1797</td>
<td>324</td>
<td>174</td>
</tr>
<tr>
<td>7</td>
<td>1830</td>
<td>323</td>
<td>173</td>
</tr>
<tr>
<td>8</td>
<td>1766</td>
<td>319</td>
<td>171</td>
</tr>
<tr>
<td>9</td>
<td>1768</td>
<td>317</td>
<td>170</td>
</tr>
<tr>
<td>10</td>
<td>1860</td>
<td>315</td>
<td>169</td>
</tr>
<tr>
<td>11</td>
<td>1817</td>
<td>313</td>
<td>168</td>
</tr>
<tr>
<td>12</td>
<td>1777</td>
<td>312</td>
<td>167</td>
</tr>
<tr>
<td>13</td>
<td>1924</td>
<td>308</td>
<td>165</td>
</tr>
<tr>
<td>14</td>
<td>1779</td>
<td>307</td>
<td>165</td>
</tr>
<tr>
<td>15</td>
<td>1816</td>
<td>304</td>
<td>163</td>
</tr>
</tbody>
</table>

4.5.15 The heavy rainfall was a result of exceptional weather patterns across the UK and was linked to both the strength and location of the jet stream, and unusually high Atlantic Sea temperatures. The jet stream is a ribbon of strong winds that are concentrated in a narrow band in the atmosphere and are formed by temperature differences. At the boundary between cold polar air and warm tropical air

\(^{5}\) Centre for Ecology & Hydrology \text{http://www.ceh.ac.uk/data/nrfa/index.html} \\
weather fronts can develop which can bring heavy rainfall and strong winds. For much of summer 2007, the jet stream was further south and stronger than usual (Figure 4.1), resulting in more rain bearing depressions crossing southern and central parts of the UK, with the higher Atlantic sea temperatures leading to the creation of more rain clouds.

Figure 4.1: Comparison of the position of the Jet Stream in July 2006 and July 2007 (Source: Met Office 2007)

4.5.16 The first rainfall event occurred between 14th and 15th June, affecting areas in the Midlands, North East and South West. This generally did not result in serious flooding within Gloucestershire but a substantial quantity of rainfall was absorbed by the dry ground and produced waterlogged conditions. Further heavy, persistent and frequent rain fell across Gloucestershire between 24th and 25th June, with approximately one month’s rainfall falling in two days. Some flooding from smaller watercourses, which responded quickly to local runoff, was experienced within Gloucestershire, however at this stage there was no significant flooding from the River Severn.

4.5.17 The third rainfall event substantially affected Gloucestershire and occurred on the 20th July, resulting in extensive flooding throughout the lower Severn catchment. This was a result of a slow-moving depression centred over south-east England moving slowly northwards. Embedded convective cells contributed to significant spatial variability but a defining characteristic of the storm was the large area (>30,000 km²) registering exceptional rainfall totals. Gloucestershire was one of the worst affected, receiving 197mm of rainfall during July 2007. This is more than four times greater than the average monthly rainfall recorded since records began in 1766.

4.5.18 The rainfall fell onto already saturated ground resulting in quick, widespread flooding from a variety of sources, not just watercourses. It is important to note that surface water, sewer and groundwater flooding played a considerable role in the summer flood event, adding to the complications. Drains and sewers were overwhelmed by the intense and prolonged rainfall, rapidly causing flooding.

River Flow Data

4.5.19 The exceptional rainfall manifested itself as extremely high river flows. Peak river flows eclipsed previous recorded maxima in some (mostly central England) catchments, runoff patterns were more typical of a wet winter and summer flow regimes were redefined over wide areas.

4.5.20 Record flood flows were recorded in Gloucestershire as a result of the exceptional flows in the Rivers Teme and Avon and the heavy rainfall experienced across Gloucestershire and Worcestershire. River levels at the Gloucester Docks gauge reached a peak of 4.92m on 23rd July. This was only 1cm lower than the highest recorded level in 1947. Across Gloucestershire, sustained high levels in the major rivers hampered the drainage of floodwaters away from afflicted communities, particularly Tewkesbury.
4.6 Fluvial Flood Risk in Gloucester City Council

4.6.1 Flood Zones show the areas potentially at risk of flooding from rivers, ignoring the presence of defences (although areas benefiting from formal defences are identified). This information has been used, in conjunction with other data, to give an account of flood risk in the study area. This has focused primarily on the Main Rivers including the River Severn, Horsbere Brook, Wotton Brook, River Twyver, Whaddon Brook, Daniels Brook and Dimore Brook. In some places, small ditches and streams exist without Flood Zones. It is clear that many of these watercourses, though small, do pose local flood risk issues. Site-specific FRAs will be required for all new developments, to appropriately take these drainage systems into account. The assessment of flood risk has also been enhanced using the Severn Tidal Tributaries CFMP, Tidal Severn Flood Risk Management Strategy and valuable local knowledge obtained from the Council.

4.6.2 Flood Zone maps exist for the main river catchments within the Council area and have been presented in Volume 2, Tiles B1-B4. An initial assessment of the Flood Zone maps indicates that of the 50,312 properties within the Gloucester administrative area, 3,040 are located within Flood Zone 3 and 4,648 within Flood Zone 2, as shown in Table 4.3.

Table 4.3: Properties within Flood Zone maps within the Gloucester administrative area

<table>
<thead>
<tr>
<th>Location</th>
<th>No. Properties</th>
<th>Percentage of Properties Located within Flood Zone (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole administrative area</td>
<td>50,312</td>
<td>-</td>
</tr>
<tr>
<td>Flood Zone 3</td>
<td>3,040</td>
<td>6.0</td>
</tr>
<tr>
<td>Flood Zone 2</td>
<td>4,648</td>
<td>9.2</td>
</tr>
</tbody>
</table>

4.6.3 Within the Lower Severn Valley flooding can occur from a combination of both tidal and fluvial processes. Mechanisms of tidal flooding are investigated further within Section 4.7. Towards the western extent of the City Council, Flood Zone maps for the River Severn form the boundary of the Council with Tewkesbury to the north and west, and Stroud to the south west. Gloucester is considered the limit of tidal dominance on the River Severn, with Llanthony and Maisemore weirs generally identified as marking the boundary between fluvial and tidal interaction. Undefended Flood Zone maps for the River Severn are wide, extending onto the lowland, rural floodplain of the Severn Vale and affecting large numbers of properties within the city, particularly around the Docks area and Alney Island. The influence of the River Severn on the adjoining tributaries can be clearly seen in the Flood Zone maps, with a number of residential and commercial properties located within the outlines. In addition, the prison (SO 8278 1854), Castle Meads electricity sub-station on Alney Island (SO 8262 2010), Westend Parade (SO 8236 1917) and Hempstead landfill site at Sud Meadow are located within Flood Zones 2 and 3. During the summer 2007 floods, electricity supplies throughout the County were threatened when Castle Meads electricity sub-station came under threat from rising flood water.
4.6.4 A number of obstructions to floodplain flow are evident within the Gloucester area. These include the Dock Branch railway line and the A417 by Over Causeway on Alney Island. Although some openings exist beneath the road to convey flood water, the road and railway embankment can still act as an obstruction during times of flood. Part of the Dock Branch railway has been removed following recommendations from the Environment Agency.

4.6.5 Many of the Main Rivers within the Council area discharge into the River Severn estuary and as such can be affected to some extent by the tide. Sea water from the Severn estuary is prevented from entering the tributaries by tidal flaps and a series of embankments along the River Severn. These control structures allow water to discharge into the estuary freely at low tide but prevent sea water from entering the tributary at high tide. This can lead to an increase in flooding on the tributaries when high river flows in the watercourses coincide with high tides in the estuary, preventing flood water from discharging into River Severn, thus backing up along the watercourse and overtopping river channels and embankments. This is referred to as ‘tide locking’ and is known to occur on a number of watercourses.

4.6.6 The Dimore Brook forms the south western boundary of the Council area with Stroud District Council. Flood Zone maps exist between Woodlands Park and the confluence with the River Severn. Upstream of the Gloucester and Sharpness Canal, some properties are at risk from flooding. Downstream of the canal the Flood Zone maps extend onto rural floodplain and are clearly influenced by the River Severn. Tide locking and channel sediment build-up blocking the siphon and associated trash screen beneath the canal at the A430 can cause localised flooding along the Dimore Brook, with flood flows known to back up beyond Quedgeley.

4.6.7 The River Twyver flows through the centre of Gloucester City. Flood Zone maps for the watercourse exist from the point at which the watercourse enters the Council area, initially extending only a short distance onto the floodplain. The main watercourse has the characteristics of a small ditch for much of its length and long sections are culverted through urban areas. At Abbeystead the main river is split by a man-made structure, designed to carry excess flow down a diversion channel and on into the Saintbridge balancing pond located between the Flood Relief Channel and the main Twyver river channel. Here, the Flood Zone maps for the main channel are narrow with only a few properties located within Flood Zone 3a. Downstream of Saintbridge balancing pond, the flood relief channel continues forward as the Sud Brook, with the main river carrying on from the split, following a course through the city of Gloucester. Flood Zone maps for the Sud Brook indicate that a significant number of properties are at risk from flooding at the Lampneys and Teddington Gardens, and through the Tredworth and High Orchard districts of the city centre as the watercourse continues in a north westerly direction. The Flood Zone maps are significantly misaligned at this location, partly due to the watercourse being heavily culverted through the City.

4.6.8 Along the main River Twyver channel a number of properties are shown to be at risk from flooding through the city centre including locations by Metz Way, Clarence Street, Wellington Street, Park Road, Brunswick Road and Trier Way, where flood water is known to spill over the culvert entrance at Derby Road (SO 8387 1814). Further downstream, properties and roads are at risk from flooding in the area between rugby club and the confluence of the Rivers Twyver and Severn from water spilling from the watercourse adjacent to the rugby club. This area is bounded by the railway line, the A40,
4.6.9 Flood Zone maps for the Wotton Brook cover the extent of the watercourse as it flows through the Council area. The Flood Zone maps are relatively narrow at the headwaters of the watercourse, but widen as the watercourse continues towards the River Severn corridor where land elevations fall to approximately 10m AOD and the floodplain widens. A number of properties are located within Flood Zones 2 and 3 as the watercourse flows through the Council area. Locations shown to be at flood risk include: Longford, Brockworth, Hucclecote and Longlevens. At Barnwood Junction, approximately ten industrial units and gardens of properties are located within Flood Zones 2 and 3 due to flood water backing up behind the Gallows Bridge embankment. Downstream of the railway line, a number of properties and roads are located within Flood Zones 2 and 3. Towards the downstream extent of Wotton Brook the Flood Zone maps extend over a wider area of the floodplain as the watercourse continues to flow in a north westerly direction between Cheltenham Road and the A40. Here, flooding is increasingly influenced by water levels on the River Severn, although there are no properties shown to be at risk within the Flood Zone maps. As the watercourse leaves the Council area and continues on its course within the Borough of Tewkesbury, the major area flooded has no properties located in it and is influenced more by flood levels on the River Severn than the Wotton Brook or Horsbere Brook.

4.6.10 Towards the northern extent of the Council area the Horsbere Brook flows in a north westerly direction, with Flood Zone maps existing for the extent of the watercourse. A significant number of properties are located within Flood Zones 2 and 3 through Hucclecote, Elmbridge and Longlevens, with the Flood Zone maps extending up to 200m on the right bank. Towards the north of Longlevens, the Flood Zone maps are misaligned in a number of places, following the A40 rather than the watercourse (Section 4.8). At SO 8494 2064 the watercourse exits the Council area before flowing on towards its confluence with the Wotton Brook. It should be noted that a flood mapping study is currently being undertaken for the Horsbere Brook with revised modelled flood outlines expected to be available at the end of 2008. Caution should therefore be taken when interpreting the existing Flood Zone information and the SFRA should be amended when the updated Flood Zone maps become available.

4.6.11 Whaddon Brook flows in the southern extent of the Council area, and Flood Zone maps exist for a small section of the watercourse between Lower Tuffley and the confluence with the Gloucester and Sharpness Canal and Daniels Brook. A number of both residential and commercial properties are shown to be at risk from fluvial flooding from both the Whaddon Brook and Daniels Brook, although some misalignments are evident within the Flood Zone maps (Section 4.8) and a number of sections are culverted through the urban areas. Since the construction of a flood relief channel on the Daniels Brook, flooding is thought to have only occurred during the summer 2007 flood event.

4.7 Tidal Flood Risk in Gloucester City

4.7.1 Flooding along the Severn Estuary can be caused by a combination of factors including high tides, tidal surges and waves overtopping defences. The funnel-shape of the Severn Estuary encourages tidal waters to propagate up the estuary, resulting in flooding to undefended areas at inland locations.
Strategic Flood Risk Assessment

Gloucester City Council

Tidal flooding can affect areas on the River Severn as far up the Severn estuary as Gloucester and occasionally beyond as far as Tewkesbury. In general however, the weirs at Gloucester (Lanthony Weir on the East Channel, SO 8219 1820; and, Maisemore Weir on the West Channel, SO 8183 2165) are considered to represent the boundary between the tidal and fluvial flows, and higher up the channel towards Gloucester the influence of fluvial flows becomes increasingly dominant in flooding. The channel also becomes narrower providing a constriction to high tides moving upstream and river flows moving downstream.

4.7.2 Within the Severn Estuary, tide levels can increase by up to 2 metres during tidal surges. Tidal surges can occur when atmospheric pressure changes. When atmospheric pressure is low, a positive surge can occur, resulting in increased water levels. Low pressure weather systems are characterised by wet and windy weather, which can result in further increases in water levels. Particularly severe flooding can occur if a surge coincides with the peak of a high tide. Wave action can also have a significant effect on the overtopping of defences and flooding. Sea defence walls are designed to accommodate a degree of wave overtopping.

4.7.3 Flooding also occurs on a number of tributaries which feed into the River Severn and Estuary. A number of watercourses and drainage systems along the estuary have flapped outfall structures to prevent tidal inundation. Flooding can occur in these watercourses when outfalls are tide locked (i.e. water levels in the estuary are high, preventing river flood flows progressing any further down the channel) leading to fluvial flows backing up and overtopping banks.

4.7.4 Flooding in the upstream sections of the Severn Estuary may be worsened by development on the floodplain. This can reduce the amount of floodplain storage and obstruct flow across the floodplain, which may result in additional flooding problems elsewhere. Studies undertaken as part of the Tidal Severn Flood Risk Management Strategy identified a number of strategically important flood storage areas within the floodplain of the River Severn (Section 6.8). These areas have been mapped and can be seen in Volume 2, Tiles A1-A4. Further demands for new development on the floodplain will inevitably occur however, these should be carefully controlled, particularly as water levels are expected to rise due to the effects of climate change.

4.8 Issues With Existing Flood Maps

4.8.1 During the review of the existing flood map information, some inaccuracies were identified and these are detailed in Table 4.4. It should be noted that most of the Flood Zone information in the study area has been derived from the modelling package JFLOW, which is national broadscale model and as such has known limitations. The accuracy of the Flood Zones in some areas is poor, likely to be due to the upland fluvial setting and complex nature of drainage. The Flood Zones can be misaligned from the channel or follow a path which does not have a watercourse. The JFLOW flood extents also do not show the impact of flood defence structures or culverts.

4.8.2 When viewing the Flood Zone data with OS Tiles these inaccuracies are clear, and whilst the best available information has been used in the SFRA, appropriate judgement should be exercised when applying the Sequential Test. In the future, updates to the Flood Zone maps may be undertaken as part of the Environment Agency’s ongoing Flood Map improvements. Updates to the Flood Zone maps should therefore be incorporated into the SFRA when they become available. It may be prudent for a suitably qualified flood risk management specialist to review and assess preliminary site allocations, to advise on local Flood map issues and areas where further investigation may be required (such as a Level 2 SFRA).
Strategic Flood Risk Assessment

Gloucester City Council

Table 4.4: Inaccuracies with Flood Maps within the Gloucester City area

<table>
<thead>
<tr>
<th>Watercourse</th>
<th>Location</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsbere Brook</td>
<td>Hucclecote, Longlevens</td>
<td>To the north-east of Hucclecote the Flood Zones are misaligned in a number of locations. Towards the north of Longlevens, the Flood Zone maps are misaligned in a number of places, following the A40 rather than the watercourse</td>
</tr>
<tr>
<td>Wotton Brook</td>
<td>Throughout extent of watercourse</td>
<td>Culverted sections</td>
</tr>
<tr>
<td>Sud Brook</td>
<td>Tredworth & High Orchard</td>
<td>Misalignments from watercourse. Watercourse is heavily culverted through most of the city</td>
</tr>
<tr>
<td>Whaddon Brook</td>
<td>Lower Tuffley</td>
<td>Flood Zone misaligned in places; some culverted sections</td>
</tr>
<tr>
<td>Daniels Brook</td>
<td>Quedegeley</td>
<td>Flood Zone misaligned in places; some culverted sections. The Flood Zone map does not take into account the flood alleviation scheme along Daniel’s Brook which will have an impact on the extent of the floodplain</td>
</tr>
</tbody>
</table>

4.9 Flooding from Other Sources

4.9.1 Methodologies for recording flooding from sources other than fluvial or tidal were not standardised until 2006. Therefore records held of such flooding can be incomplete, or not to a uniform standard. Records of flooding from other sources also tend to show locations that have flooded in the past, rather than give an indication of flood risk areas based on probabilities, like the Flood Zone maps.

4.9.2 Information has been gathered on flooding experienced from sources other than rivers, and is described in this section.

4.10 Flooding from Artificial Drainage Systems (Sewers)

4.10.1 Sewer flooding occurs when urban drainage networks become overwhelmed and maximum capacity is reached. This can occur if there is a blockage in the network causing water to back up behind it or if the sheer volume of water draining into the system is too great to be handled.

4.10.2 Higher flows are likely to occur during periods of prolonged rainfall, common to the autumn and winter months. This is also when the capacity of the sewer systems is most likely to be reached. During periods of low flow, for example summer months, sewers become susceptible to blockage as the low flows are unable to transport solids. This leads to deposition and gradual build up of solid debris.

4.10.3 One water company covers the Gloucester City study area: Severn Trent Water (STW). STW has been consulted for information on flooding from surface water and artificial drainage sources and this has been provided where data has been made available.

4.10.4 All Water Companies have a statutory obligation to maintain a register of properties/areas which are at risk of flooding from the public sewerage system, and this is shown on the DG5 Flood Register. This includes records of flooding incidents from foul sewers, combined sewers and surface water.
Strategic Flood Risk Assessment

Gloucester City Council

sewers which are deemed to be public and therefore maintained by the Water Company. Flooding
from land drainage, highway drainage, rivers/watercourses and private sewers is not recorded within
the register.

4.10.5 The DG5 register tends to show, to a greater or lesser extent: the location of the incident, the date of
the incident, a description of the incident, whether the incident occurred internally or externally and
the register the incident has been recorded on. When an incident is reported, a decision chart is used
to assess whether the properties/areas are ‘at risk’ and then the record is added to the appropriate
register.

4.10.6 The recording of flood events by the authorities has often led to improvements intended to prevent
reoccurrence, so historical flooding is not necessarily evidence of propensity for future flooding.

4.10.7 The DG5 data received from STW has been provided at four-digit postcode level, hence no street
level information on flooding was available. In summary it is evident that eighteen postcode areas
within the Gloucester City administrative area are identified as having properties at risk of flooding
from artificial drainage systems and surface water runoff. It is not possible to identify the exact
location of the properties at risk within the postcode polygons and therefore caution should be taken
when interpreting this information, as it is at a coarse resolution. In general the level of flood risk from
artificial drainage systems within the City is medium to high (Table 4.4). Postcode areas with the
highest level of risk include: GL1 1, GL1 2, GL1 3 and GL1 4. These are located towards the northern
extent of the Council area within the City Centre. The data for the Council area is illustrated in Volume
2, Tile B22.
Table 4.5: Flooding From Sewers as Recorded in the Severn Trent Water DG5 Register

<table>
<thead>
<tr>
<th>Postcode Area</th>
<th>No. Properties Affected</th>
<th>Level of Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL1 2</td>
<td>40*</td>
<td>High</td>
</tr>
<tr>
<td>GL1 3</td>
<td>33</td>
<td>High</td>
</tr>
<tr>
<td>GL1 4</td>
<td>36</td>
<td>High</td>
</tr>
<tr>
<td>GL1 5</td>
<td>7*</td>
<td>Medium</td>
</tr>
<tr>
<td>GL10 3</td>
<td>12*</td>
<td>Medium</td>
</tr>
<tr>
<td>GL2 0</td>
<td>9*</td>
<td>Medium</td>
</tr>
<tr>
<td>GL2 4</td>
<td>6*</td>
<td>Medium</td>
</tr>
<tr>
<td>GL2 5</td>
<td>5*</td>
<td>Low</td>
</tr>
<tr>
<td>GL2 8</td>
<td>9*</td>
<td>Medium</td>
</tr>
<tr>
<td>GL2 9</td>
<td>12*</td>
<td>Medium</td>
</tr>
<tr>
<td>GL3 1</td>
<td>4*</td>
<td>Low</td>
</tr>
<tr>
<td>GL3 3</td>
<td>1*</td>
<td>Low</td>
</tr>
<tr>
<td>GL3 4</td>
<td>3*</td>
<td>Low</td>
</tr>
<tr>
<td>GL4 0</td>
<td>8*</td>
<td>Medium</td>
</tr>
<tr>
<td>GL4 4</td>
<td>1</td>
<td>Low</td>
</tr>
<tr>
<td>GL4 5</td>
<td>1*</td>
<td>Low</td>
</tr>
<tr>
<td>GL4 6</td>
<td>9*</td>
<td>Medium</td>
</tr>
<tr>
<td>GL1 1</td>
<td>33</td>
<td>High</td>
</tr>
</tbody>
</table>

* These numbers include properties within this postcode area which fall outside the Council Boundary

4.10.8 STW has stressed that Local Planning Authorities should adopt a planning policy requiring the use of SUDS as proposed in PPS25 and that the Sequential Test should be used to allocate land for development within low risk Flood Zones, so that the risk of fluvial flooding is minimised. This reduces the risk of fluvial flood waters entering public foul and surface water sewers and resultant widespread flooding and pollution. Individual developments should be designed so that natural flood pathways are left free of buildings. These recommendations are put forward as policy considerations, in Chapter 7. Guidance on the application of SUDS can be found in Chapter 10.

4.11 Flooding from Surface Water

4.11.1 Surface water flooding occurs when excess water runs off across the surface of the land and is usually the product of short duration but intense storms. This type of flooding usually occurs because the ground is unable to absorb the high volume of water that falls on it in a short period of time, or because the amount of water arriving on a particular area is greater than the capacity of the drainage facilities that take it away. Surface water flooding can also occur from wet antecedent conditions. Where discharge is directly to a watercourse, locally high water levels can cause back-up and prevent drainage taking place. In each instance the water remains on the surface and flows along the easiest flow path towards a low spot in the landscape. The impermeability of concrete and tarmac is often
responsible for reduced infiltration and resultant high runoff. Roads often make for easy flow paths, leading to situations where roads become impassable.

4.11.2 Surface water flooding is often short lived and localised. Several instances may result from a single storm throughout the catchment. Often there is limited notice as to the possibility of this type of flooding. This, combined with the high velocities achievable when water is flowing along a contained smooth surface such as a road, can cause surface water flooding to be devastating in nature. Suspended material can be carried into drains by overland flows or floodwaters and this can also lead to them becoming blocked, exacerbating the problem.

4.11.3 There is currently no dataset depicting predicted surface water flood risk areas, and time restraints have precluded surface water flood risk mapping for Gloucestershire as part of the SFRA. Through the duration of the Level 1 study, surface water modelling has come to the fore and methodologies are rapidly being developed. The Pitt Review notes that the Environment Agency is assessing the feasibility of developing a rapid, national topographic screening technique to show areas which are susceptible to surface water flooding from heavy rainfall, which could be used to inform future updates of the SFRA. In the interim, data on surface water flooding hotspots included in the SFRA (Volume 2, B Tiles) will be of use to local emergency responders and for planning purposes. It should be noted, however, that through the duration of the study the Environment Agency has firmed its requirement for surface water modelling as part of SFRAs, and has requested that surface water modelling is carried out as part of a Level 2 SFRA.

4.11.4 The Highways Agency and the County Council provided extensive databases of surface water flooding locations and these have been mapped as GIS points in Volume 2, Tiles B1-B4. Surface water flooding in Gloucester tends to be associated with poor urban drainage and backing up within urban drainage systems under high river flows.

4.11.5 The geology and topography of the study area contribute to the rainfall response within Gloucester and therefore the likelihood and nature of surface water flooding (see Section 1.8). In addition, areas with an abundance of impervious surfaces mean these areas are also at risk of surface water flooding, especially when local intense rainstorms occur. Any site-specific FRA would need to adequately assess the risk from surface water flooding.

4.11.6 A change in the way surface water is managed is required to alleviate the risk of flooding from this source. Management of surface water through the overland system is generally considered more effective than relying solely on the capacity of underground systems. Slowing down the water and storing it before it reaches the piped system can greatly reduce the potential impact of surface water flooding. In less extreme circumstances than summer 2007, this approach should be able to prevent flooding. This approach is set out in the Government’s new Water Strategy, Future Water[^8]. It states that by 2030 surface water will be managed more sustainably by allowing for the increased capture and reuse of water, slow absorption through the ground, and more above-ground storage and routing of surface water separate from the foul sewer, where appropriate. There will be less reliance on the upgrading of the sewer system to higher design standards and rather that water will be increasingly managed on the surface.

4.11.7 The Pitt Review recommends the production of Local Authority Surface Water Management Plans (SWMPs), a first step in realising the sustainable management of surface water. SWMPs should focus on risk management and optimising the provision of sustainable surface water drainage infrastructure (i.e. SUDS). They should also take account of the risks of surface water and sewer flooding and how these might affect an area in combination with flooding from rivers and (where relevant) canals, reservoirs, the sea or groundwater. SWMP guidance may be developed as a supplementary planning document within the LDF to address flooding and water management issues. Further details on SWMPs can be found in paragraph 4.23 of the PPS25 Practice Guide (2008), which became available during the course of this study.

4.11.8 It is recommended that the Council considers the production of a SWMP for Gloucester.

4.12 Flooding from Impounded Water Bodies

4.12.1 As part of the SFRA it is necessary to consider the risk of overtopping or breach of reservoirs and canals. British Waterways (BW) was consulted to gain information on past reservoir breach and overtopping incidents of canals, while the Environment Agency was consulted to gain a comprehensive overview of reservoirs currently held under the Reservoirs Act, and any breach and overtopping information of these reservoirs. Where reservoirs and canals impound water above the natural ground level, there may be a risk of failure of the embankment resulting in rapid inundation of the surrounding area.

Canals

4.12.2 It is important that canals are included in an SFRA as canals can form a vital land drainage function. Occasionally, canals can overtop due to high inflows from natural catchments and if overtopping occurs from adjacent water courses. This additional water can be routed/conveyed by the canal which may cause issues elsewhere, not only within the catchment of interest but also in neighbouring catchments where the canal might cross a catchment boundary.

4.12.3 There is one canal in the Council area, and this falls towards the western extent. The Gloucester and Sharpness Canal runs through the industrial area of the City parallel to the River Severn. Liaison with British Waterways (BW) indicated that there are no recorded incidents of breaches or overtopping, or any other local flood risk instances associated with this canal.

4.12.4 Consultation with BW has, however, indicated that there are sections of raised sections of canal within the Gloucester City Council area. These have been mapped and can be seen on Volume 2 Tiles A1-A4. There is a residual risk of breach from all raised canals and therefore, residual risk areas have also been mapped. Development should be avoided within these residual risk locations.

4.12.5 At present canals do not have a level of service for flood recurrence (i.e. there is no requirement for canals to be used in flood mitigation), although BW, as part of its function, will endeavour to maintain water levels to control the risk of flooding from canals to adjacent properties. It is important, however, that any development proposed adjacent to a canal be investigated on an individual basis regarding flooding issues and should be considered as part of any FRA.

Reservoirs

4.12.6 Many reservoirs in the UK lie immediately upstream of, or adjacent to, heavily populated areas. The rapid, uncontrolled discharge of water from such reservoirs could have catastrophic consequences on life and property (though the risk of this occurrence is very low). Reservoirs with an impounded
volume in excess of 25,000 cubic metres (measured above natural ground level) are governed by the Reservoirs Act 1975 and are listed on a register held by the Environment Agency. The reservoir register for Gloucester City Council is detailed in Table 4.6.

Table 4.6: Reservoir Register for Gloucester City Council

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Physical Status</th>
<th>Situation</th>
<th>NGR</th>
<th>Category</th>
<th>Year Built</th>
<th>Dam Type</th>
<th>Maximum Height</th>
<th>Capacity</th>
<th>Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saintbridge Balancing Pond 1</td>
<td>In Operation</td>
<td>Near Gloucester</td>
<td>SO8500016700</td>
<td>Impounding</td>
<td>1975</td>
<td>Concrete Service</td>
<td>2.1</td>
<td>25000</td>
<td>13000</td>
</tr>
<tr>
<td>Saintbridge Balancing Pond 2</td>
<td>In Operation</td>
<td>Near Gloucester</td>
<td>SO8500016800</td>
<td>Impounding</td>
<td>1989</td>
<td>Concrete Service</td>
<td>6</td>
<td>40000</td>
<td>21000</td>
</tr>
</tbody>
</table>

4.12.7 Due to high standards of inspection and maintenance required by legislation, normally flood risk from registered reservoirs is moderately low. Whilst the reservoir register, and indeed the SFRA, has identified impounded water bodies with a storage volume greater the 25,000m³, it should be stressed that a number of smaller impounded water bodies are located within the study area, all of which pose flood risk. Therefore development immediately downstream of any reservoir or impounded water body (not just those contained within the reservoirs database) should be discouraged and will be subject to a Level 2 SFRA if the development is deemed necessary.

4.12.8 Consultation with the Environment Agency has indicated that there are no records of breaching or overtopping within the Gloucester City Council area. Reporting of dam incidents to the Environment Agency is a voluntary process and the system has only been in place since 2007. Prior to that reports of incidents were collected on an ad hoc basis by the Building Research Establishment, from published papers and questionnaires. Due to the voluntary nature of incident reporting the records held by the Environment Agency are not complete and the incidents provided only represent those overtopping incidents or breaches that the Environment Agency have been informed of. It should be noted that when referring to ‘overtopping’ the records held by the Environment Agency are referring to the overtopping of an embankment and are not referring to water flowing down a reservoir spillway. A spillway operating in the way that it was designed is not a reportable reservoir incident under the post-incident reporting system.

4.12.9 Defra’s ‘Making Space for Water’ project ‘Flooding from Other Sources HA4a’ refers to the need for flood risk mapping for all sources of flooding. The study concluded that flood risk mapping is feasible for many sources of flooding that are not currently covered by the Environment Agency Flood Map, using existing flow modelling and GIS tools. However, there are significant constraints in terms of the need to undertake extensive data collection to ensure the production of flood maps that will be useful and are not dominated by modelling uncertainties. The outcome of the HA4a project is to produce a report on the feasibility of mapping possible flooding from other sources; it will not produce the actual maps that show these risks. The intention is that these requirements can be built into the Environment Agency’s next Flood Mapping Strategy 2008-13. The project is also considering means of making this information available to interested parties, both internal and external.

4.12.10 Recommendations put forward by the Pitt Review further highlight the need for inundation maps of reservoir breaches which provide a spatial indication of flood risk from impounded water bodies.
Strategic Flood Risk Assessment

Gloucester City Council

Guidance put forward by Defra in their Research and Development Technical Report FD2320/TR2 FRA Guidance for New Development refers to the CIRIA Report C542 Risk Management for UK Reservoirs. The report was prepared following extensive consultation with the UK reservoir community and is aimed chiefly at reservoir owners, engineers, regulators, insurers and safety personnel concerned with reservoirs in the UK. The document provides an examination of past reservoir failure and provides an assessment procedure to determine potential floodwater levels and their impact following a failure. As noted by the Pitt Review, once inundation maps of reservoir breaches have been produced by reservoir undertakers, the Council should incorporate this information into the Community Risk Register and emergency planning procedures, and indeed the SFRA. The Defra document FD2321/TR2 also provides further guidance on the mapping of reservoir flood plans.

4.13 Flooding from Groundwater

4.13.1 Groundwater flooding is most likely to occur in low-lying areas underlain by permeable rocks (aquifers). These may be extensive regional aquifers (e.g. Chalk or Sandstone) or localised sands or river gravels in valley bottoms underlain by less permeable rocks. Groundwater flooding occurs as a result of water rising from the underlying rocks or from water flowing from abnormal springs. This tends to occur after long periods of sustained high rainfall. Higher rainfall means more water will infiltrate into the ground and cause the water table to rise above normal levels. Groundwater tends to flow from areas where the ground level is high, to areas where the ground level is low. In low-lying areas the water table is usually at shallower depths anyway, so during very wet periods, all the additional groundwater flowing towards these areas can cause the water table to rise to the surface causing groundwater flooding.

4.13.2 Different geological aquifers can react in different ways to high rainfall intensity events. For example, limestone aquifers can readily transmit groundwater as they are fractured in nature and thus may exacerbate flooding issues in watercourses when combined with other hydrological factors. In comparison, the effects and impacts of groundwater flooding in sandstone aquifers can take long periods of time to dissipate due to the high storage potential of the aquifer. Groundwater flooding differs from fluvial flooding and surface water flooding in that it may take weeks or months to dissipate, because groundwater flow is very slow and water levels take much longer to fall, therefore groundwater flooding effects can still be evident a long time river levels have subsided.

4.13.3 In recent times the decline in industry has led to an increase in groundwater levels due to a reduction of abstraction, though there is no record of this problem in the study area.

4.13.4 In comparison to fluvial and tidal flooding, the understanding of the risks posed by groundwater flooding is limited and mapping of flood risk from groundwater sources is in its infancy. There is currently no one organisation with responsibility to respond to groundwater flooding, therefore the risks and mechanisms of groundwater flooding are poorly reported. Groundwater level monitoring records are available for areas on Major Aquifers, however, at lower lying valley areas, which can be susceptible to groundwater flooding such as mudstones, clays and superficial alluvial deposits, very few records are available. This gap is currently being addressed as part of Defra’s Making Space for Water (MSfW) consultation on Groundwater flooding records collation, monitoring and risk assessment (Reference HA5). The need for a national co-ordination of groundwater flooding risk

9 Defra/Environment Agency Flood and Coastal Defence R&D Programme; R&D Outputs: Flood Risk To People, Phase 2, FD2321/TR2 Guidance Document, March 2006
Strategic Flood Risk Assessment

Gloucester City Council

management within the overall flood and coastal erosion risk management framework has been recognised, and Reference Document HA5 has put forward recommendations for the effective monitoring and collation of groundwater flooding information along with further recommendations for organisational and funding changes to implement this and direction for the strategic overview role of the Environment Agency.

Historical Groundwater Flooding

4.13.5 The most widespread and recent incident of groundwater flooding throughout the UK occurred during the winter of 2000/2001 (with some further locations affected during 2002/2003) and followed a period of exceptionally heavy rainfall. During an eight month period from September 2000, rainfall in England and Wales was 166% of the long term average with the highest rainfall coinciding with areas of Chalk outcrop. Summer groundwater flooding is relatively rare as dry soil conditions normally preclude widespread aquifer recharge during the summer months (exceptions include 1879, 1912 and 2007).

4.13.6 Following the widespread floods of winter 2000/2001 Defra commissioned a study investigating the occurrence of groundwater flooding throughout England. Provisional maps of areas vulnerable to groundwater emergence from consolidated aquifers (Groundwater Emergence Maps, GEMs) were produced to assess the geographical extent and severity of the groundwater flooding in 2000/01. Analysis of the GEMs indicated that the problem of groundwater flooding within England is largely confined to Chalk aquifers, particularly in the southeast of England.

Groundwater Flooding within Gloucester City Council

4.13.7 As discussed, records of groundwater flooding are generally limited and methods of mapping areas at risk from groundwater flooding are in their infancy. Consultation with the Environment Agency has indicated the GEMs do not cover the Gloucester City Council area and there are no recorded incidents of groundwater flooding within the Council area.

4.13.8 In conclusion, areas at risk from groundwater flooding are largely unknown. Although data collected for the SFRA has not uncovered areas potentially at risk, the assessment undertaken as part of this SFRA is not exhaustive and the risk of flooding from groundwater flooding must be considered as part of any further FRA.

11 Jacobs (2004), Strategy for Flood and Erosion Risk Management: Groundwater Flooding Scoping Study (LDS 23). Jacobs, Reading
4.14 Key Recommendations: Chapter Four

- In the Pitt Review, attention should be drawn to recommendations 14, 15, 16, 17 and 19, which address the role of the Local Authority with regards to flood risk management. It recommends that the Local Authority takes a lead role in the management of flood risk with the support of the relevant organisations.

- All historical events, including summer 2007, are important in obtaining an understanding of the flood risk posed to the study area, and should all be considered in the location of new development and as part of any assessment of flood risk.

- The accuracy of the Flood Zones in some areas of the study area is poor; they can be misaligned from the channel or follow a path which does not have a watercourse. When viewing the Flood Zone data with OS Tiles these inaccuracies are clear, therefore appropriate judgement should be exercised when applying the Sequential Test. It may be prudent for a suitably qualified flood risk management specialist to review and assess preliminary site allocations, to advise on local Flood map issues and areas where further investigation may be required (such as a Level 2 SFRA).

- The Environment Agency will require further surface water investigation and mapping to be carried out as part of a Level 2 SFRA.

- There should be less reliance on the upgrading of the sewer system to higher design standards to accommodate new developments; rather, water should be managed on the surface through the appropriate application of SUDS.

- The Council should produce a Surface Water Management Plan, in line with Pitt Review recommendations, which should provide the basis for managing all local flood risk.

- There are sections of raised sections of canal within the Gloucester study area which pose a residual risk of breach or overtopping. Development should be avoided within these residual risk locations. Any development that is deemed necessary in these areas will require breach analysis to be carried out as part of a Level 2 SFRA.

- Whilst the SFRA has identified reservoirs with a storage volume greater the 25,000m³, there are smaller reservoirs located within the study area which also pose flood risk. Development immediately downstream of any reservoir or impounded water body should be discouraged and will be subject to a Level 2 SFRA if the development is deemed necessary.

- Areas susceptible to groundwater flooding within the study area are largely unknown and the SFRA has not uncovered areas potentially at risk. However, the assessment undertaken as part of this SFRA is not exhaustive and the susceptibility to flooding from groundwater must be considered as part of any further FRA.
5 Strategic Flood Risk Mapping

5.1 Strategic Flood Risk Maps

5.1.1 This chapter provides a clear description of the data that has been used for the purpose of strategic flood risk mapping. These maps, which can be found in Volume 2, Tiles B1-B5, show flood risk from sources including fluvial, surface water, foul and combined sewers, groundwater and impounded water bodies including reservoirs and canals. This information is based on the findings in Chapter 4, which has included an assessment of suitability. The Sequential Test process primarily uses the Flood Zone maps to locate developments in low fluvial flood risk areas. The point of mapping flooding from other sources is to ensure new developments are also located away from areas which have experienced flooding from ‘other sources’.

5.1.2 The strategic flood risk information is also presented as GIS layers, and can be interrogated to gain the associated descriptive information. These can be found in the CD attached to this report.

5.1.3 In accordance with the PPS25 Practice Guide (2006), the Level 1 SFRA has used Flood Zone outlines which have been produced using detailed modelling techniques in preference to the Environment Agency’s Flood Zone maps, wherever possible. Flood Zone outlines used within the SFRA are undefended and should be used to carry out the Sequential Test. When representing the Flood Zones, Level 1 SFRAs should also show the functional floodplain, Flood Zone 3b, where such outlines exist. If Flood Zone 3b has not been produced as part of a detailed modelling project, similar outlines, such as the 1 in 25 year outline can be used, upon agreement with the Environment Agency. In the absence of such detailed information, the PPS25 Practice Guide (2006) recommends that all areas within Flood Zone 3a should be considered as Flood Zone 3b unless, or until, an appropriate FRA shows to the satisfaction of the Environment Agency that it can be considered as falling within Flood Zone 3a. Therefore, as part of this SFRA, modelled outlines have been used to represent Flood Zone 3b where they exist. Where no modelled outlines exist, Flood Zone 3a has been used to represent Flood Zone 3b.

5.2 Hydraulic (River) Models

5.2.1 River models have been collected and used for the production of the SFRA flood maps. Within the study area, Environment Agency hydraulic models exist for the River Severn (Fluvial), River Twyver, and Wotton Brook. The table overleaf gives details of the modelled Flood Zone outlines, and the outlines presented in Volume 2, Tiles B1-B4. In all cases the approach has been discussed and agreed with the Environment Agency.

5.2.2 For the remainder of watercourses in the study area, the Environment Agency’s Flood Zone information has been used and is also presented in Volume 2, Tiles B1-B21. It should be noted that some smaller watercourses do not have Flood Zones produced for them.
Table 5.1: Environment Agency Hydraulic Models and Modelled Flood Zones within Gloucester City Council

<table>
<thead>
<tr>
<th>Model</th>
<th>Watercourse</th>
<th>Derived From</th>
<th>Modelled Extents within Council Area</th>
<th>Modelled Flood Zones</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Severn West Channel</td>
<td>River Severn West Channel</td>
<td>Environment Agency Strategy & SFRM models</td>
<td>SO 8165 1966</td>
<td>SO 7955 1493</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>River Severn East Channel</td>
<td>River Severn East Channel</td>
<td>Environment Agency Strategy & SFRM models</td>
<td>SO 8216 1970</td>
<td>SO 8149 1884</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>River Twyver & Flood Relief Channel</td>
<td>River Twyver & Flood Relief Channel</td>
<td>Environment Agency SFRM Model</td>
<td>SO 8638 1547</td>
<td>SO 8242 1948</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Sud Brook</td>
<td>Sud Brook</td>
<td>Environment Agency SFRM Model</td>
<td>SO 8512 1629</td>
<td>SO 8450 1671</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Wotton Brook</td>
<td>Wotton Brook</td>
<td>Environment Agency SFRM Model</td>
<td>SO 8743 1679</td>
<td>SO 8382 2044</td>
<td>✓ ✓ ✓</td>
</tr>
</tbody>
</table>
Flood mapping study is currently being undertaken. Consultation with the Environment Agency has indicated that modelled flood outlines are expected to be available at the end of 2008. The SFRA should be amended to incorporate this information when it becomes available.
5.3 Sewer Flooding

5.3.1 Due to the Data Protection Act, it is not possible to specify the exact locations of past incidents. Instead, data has been received at four-digit postcode level. These postcode polygons outline a series of large geographical areas. Within each postcode area it has been indicated how many incidents have occurred. This information is presented in a separate high-level historical flooding map in Volume 2, Tile B5. This information has also been digitised as a GIS layer.

5.3.2 Sewer flood risk has been classified according to the number of properties flooded from overloaded sewers within each postcode area. The categorisation is as follows:

- **Low sewer flood risk:** 1 to 5 properties Denoted by a yellow polygon
- **Medium sewer flood risk:** 6 to 15 properties Denoted by an orange polygon
- **High sewer flood risk:** >15 properties Denoted by a red polygon

5.3.3 The colour system is designed to indicate that even though a whole postcode area might be shown as at risk, only a few incidents might have been recorded in that area.

5.3.4 Future updates to the DG5 flood register should be fed into future updates of the SFRA. At present, the relatively course resolution of data limits its use for the purpose of spatial planning. In future updates to the SFRA, water companies may provide full location information. In the meantime there is an onus on developers to assess sewer flood risk as fully as possible as part of site-specific FRAs.

5.4 Flooding from Surface Water, Impounded Water Bodies and Groundwater

5.4.1 Flooding from surface water, canals, reservoirs and groundwater has been mapped using the historical data collected in Chapter 4. GIS ‘points’ have been used to indicate where flooding from these sources has occurred. This is not considered to be exhaustive since the data are based on historical events rather than predictive modelling (and therefore may not represent very rare events) so the full extent of these flooding mechanisms may not have been captured. It is therefore recommended that during future updates to the SFRA, reviews and consultations are undertaken to ensure that any new surface water, canal, reservoir and groundwater flooding locations and issues are fully taken into account.

5.5 Climate Change

5.5.1 In its October 2006 publication of the predicted effects of climate change on the UK\(^{12}\), Defra described how short duration rainfall could increase by 30% and flows by 20% by the year 2085, and suggested that winters will become generally wetter whilst summers, although drier, will be characterised by more intense rainfall events. Changes in rainfall patterns could result in changes in the intensity, frequency and timescales of rainfall events. Such changes will affect catchment wetness, groundwater flows into rivers and peak flows in watercourses, as well as urban drainage. Changes in sea level could result in tide locking of watercourses draining to the sea and resultant coastal and tidal flooding.

\(^{12}\) Defra, Flood and Coastal Defence Appraisal Guidance, FCDPAG3 Economic Appraisal; Supplementary Note to operating Authorities – Climate Change Impacts; October 2006
Overall, these effects will tend to increase both the size of Flood Zones and the depth of floodwater associated with rivers, and the amount of flooding experienced from ‘other sources’. Sites that are currently within Flood Zones 2 and 3 will be subject to more frequent and potentially deeper flooding. PPS25 sets out current guidance for changes to flood risk as a result of climate change, shown in Table 5.2.

Table 5.2: PPS25 Guidance for Changes to Flood Risk as a Result of Climate Change

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1990 to 2025</th>
<th>2025 to 2055</th>
<th>2055 to 2085</th>
<th>2085 to 2115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak rainfall intensity</td>
<td>+5%</td>
<td>+10%</td>
<td>+20%</td>
<td>+30%</td>
</tr>
<tr>
<td>Peak river flow</td>
<td>+10%</td>
<td></td>
<td>+20%</td>
<td></td>
</tr>
<tr>
<td>Offshore wind speed</td>
<td></td>
<td>+5%</td>
<td></td>
<td>+10%</td>
</tr>
<tr>
<td>Extreme wave height</td>
<td></td>
<td>+5%</td>
<td></td>
<td>+10%</td>
</tr>
</tbody>
</table>

Methods used to derive the Climate Change maps

Sensitivity testing of the national Flood Zone maps has been carried out by the Environment Agency, using the 20% increase in peak river flows expected between 2025 and 2115. In very flat areas, the extent of inundation becomes bigger, while in well-defined floodplains, the depth of the floodwaters increases. This means that areas currently located in a lower-risk zone (e.g. Flood Zone 2) could, in future, be re-classed as lying within a higher risk zone (e.g. Flood Zone 3). In line with these findings, and to represent fluvial climate change scenarios where no other information exists, the Environment Agency Flood Zone maps have been used to infer climate change scenarios. The current Flood Zones have been ‘reassigned’ to show the following:

- Over a period of 50 to 100 years areas currently indicated as being within Flood Zone 2 will become Flood Zone 3a
- Over a period of 50 to 100 years areas currently indicated as being within Flood Zone 3a will become Flood Zone 3b

This approach (see below) gives an indication of how Flood Zones and flood probabilities are likely to change over time. The technique adopted is precautionary but one which is suitable to infer possible climate change impacts on fluvial flood risk in the absence of modelled climate change outlines.
A number of watercourses in the study area have been modelled, detailed in the table below. Wherever possible, this study has sought to use modelled information for the 1% AEP (1 in 100 year) climate change scenario (i.e. 100 +20%) in preference to the technique outlined previously, by either:

- Using modelled climate change scenarios for the 1%AEP (1 in 100 year) event (Flood Zone 3a), or
- Where modelled climate change outlines do not exist, using the 0.5% AEP (1 in 200 year) or 1% AEP (1 in 100 year) modelled outlines as a climate change proxy for the 1% AEP (1 in 100 year) event (Flood Zone 3a). This method is supported by the fact that the 0.1% AEP (1 in 1000) or 0.5% AEP (1 in 200 year) outlines often show similar extents to the climate change scenarios of the 100 year event.

Table 5.3: Modelled Flood Outlines used for the 1% AEP (1 in 100 year) Climate Change Scenario

<table>
<thead>
<tr>
<th>Relevant Area</th>
<th>Watercourse</th>
<th>Modelled Flood Outlines</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Severn</td>
<td>River Severn West & East</td>
<td>1% AEP (1 in 100 year) +</td>
<td>No modelled flood outlines available. Current Flood</td>
</tr>
<tr>
<td>Fluvial</td>
<td>Channels</td>
<td>20%</td>
<td>Zone 2 used climate change outline</td>
</tr>
<tr>
<td>River Twyver</td>
<td>River Twyver & Sud Brook</td>
<td>1.5% AEP (1 in 150 year)</td>
<td>1% AEP (1 in 100 year) +20% used for climate change</td>
</tr>
<tr>
<td>Wotton Brook</td>
<td>Wotton Brook</td>
<td>0.5% AEP (1 in 200 year)</td>
<td>outline</td>
</tr>
<tr>
<td>Horsbere Brook</td>
<td>Horsbere Brook</td>
<td>0.1% AEP (1 in 1000 year)</td>
<td></td>
</tr>
</tbody>
</table>

5.5.6 The climate change outlines are provided in a series of maps covering the study area (Volume 2, Tiles C1-C4).
5.5.7 The strategic flood risk maps (Volume 2, B Tiles) show the present-day fluvial flood risk scenario. Where no modelled outlines exist for Flood Zone 3b, Flood Zone 3a has been used to represent Flood Zone 3b. This incorporates potential climate change into the Flood Zone maps and provides an effective method of incorporating climate change into the Sequential Test process.

Likely Climate Change Impacts

5.5.8 As discussed in Section 5.5.3, upland areas will be subject to deeper, faster flowing water as climate change affects flood risk, while in lowland areas the extent of flooding is likely to become greater. Given the lowland setting of Gloucester, an increase in flood extent is expected, but flood waters might also be deeper. This means that the flood hazard is likely to increase over time, creating increased risk to humans, more damage to property and higher economic damages. A Level 2 SFRA, which assesses flood hazard, will therefore be required for site allocations which need to satisfy the Exception Test. Certainly, sites that are currently within Flood Zones 2 and 3 will be subject to more frequent and potentially deeper flooding. This is reflected in the climate change maps (Volume 2, Tiles C1-C4) which show that areas currently in Flood Zone 3a are likely to fall in Flood Zone 3b in the future. Additionally, the tidal section of the Severn might be subject to increased storm surges and wave height in the future.

5.5.9 The Severn Tidal Tributaries CFMP has been reviewed to ascertain the predicted effects of climate change on Gloucester. This states that the most significant changes in flood depth and extent can be seen in the catchments of the Sud Brook and River Twyver, including the industrial area around the Gloucester Docks, through St Paul’s, High Orchard, Barton and Tredworth, and south of Coney Hill. There are a few considerable changes in the Wotton Brook catchment, where properties west of the A38 Tewkesbury road and those on the border between Elmbridge and Wotton are expected to flood in the future. There is also an area of agricultural land downstream of the A40 at risk. Slight increases in depth and extent of flooding in areas already at risk of flooding from the Daniels and Dimore Brooks are predicted, but not on the same scale as other areas of the Gloucester Streams. Damages during the 1% AEP (1 in 100 year) flood event increase by 17% to £110 million under the 100 year horizon future scenarios. The scale of damage, therefore, remains high.

5.5.10 The LPA should consider using the climate change maps to carry out the Sequential Test, in order to give a particularly long-term risk-based approach to planning. It should be noted that the climate change maps do not show a climate change scenario for Flood Zone 2. For the purpose of spatial planning it is recommended that a buffer of 10m (measured from the edge of the existing Flood Zone 2) is added to represent future climate change.

5.5.11 It is expected that flood risk from surface water, sewers, groundwater and impounded water bodies will generally increase due to the expected wetter winters (causing more frequent groundwater flooding) and incidence of short-duration high-intensity rainfall events associated with summer convective storms (causing more frequent surface water and sewer flooding). However, if surface water can be better managed at the surface rather than the immediate discharge to sewers (i.e. by the implementation of SUDS) this risk can be reduced.

5.5.12 Should the need to apply the Exception Test be identified, a Level 2 SFRA will be required which should include a detailed investigation into the impacts of climate change on flood risk.
5.6 **Key Recommendations: Chapter Five**

- Flood Zone outlines used within the SFRA are undefended and should be used to carry out the Sequential Test.

- Modelled outlines have been used to represent Flood Zone 3b where they exist. Where no modelled outlines exist, Flood Zone 3a has been used to represent Flood Zone 3b. This incorporates potential climate change into the Flood Zone maps and provides an effective method of incorporating climate change into the Sequential Test process. 3a should be taken to equal 3b unless, or until, further work is carried out to prove otherwise (e.g. Level 2 SFRA, FRA).

- Future updates to the DG5 flood register (depicting sewer flood incidents) should be fed into future updates of the SFRA. At present, the relatively course resolution of data limits its use for the purpose of spatial planning. In the meantime there is an onus on developers to assess sewer flood risk as fully as possible as part of site-specific FRAs.
6 Flood Warning Systems and Flood Risk Management Measures

6.1 Flood Risk Management

6.1.1 Flood risk management can reduce the probability of flooding occurrence though the management of land, river systems and flood defences, and reduce the impact though influencing development in flood risk areas, flood warning and emergency response.

6.2 Catchment Flood Management Plans

6.2.1 A Catchment Flood Management Plan (CFMP) is a high-level strategic plan through which the Environment Agency seeks to work with other key-decision makers within a river catchment to identify and agree long-term policies for sustainable flood risk management (in contrast to flood risk management strategies overleaf, which provide strategic options for flood risk management). It is produced in discussion with other key decision makers within a river catchment. CFMPs are being developed for the whole of England and Wales and are intended to define appropriate policies for the management of flood risk over the next 50 to 100 years. They will not set specific flood risk reduction measures at defined areas within the catchment, but will promote a range of activities for managing flood risk across the whole catchment. Gloucester City Council is covered by the Severn CFMP on the north eastern half of the Council area and by the Severn Tidal Tributaries CFMP on the south western half of the Council area. Figure 6.1 shows the coverage of these CFMPs in Gloucester City Council, and how the Council fits into the wider Severn and Severn Tidal Tributaries CFMP catchments.

Figure 6.1: Coverage of CFMPs in Gloucester City Council and how the Council fits in the wider Severn and Severn Tidal Tributaries CFMP Catchments
Severn CFMP

6.2.2 The first Severn CFMP was undertaken as a pilot study in 2004/2005, but during the course of the production of the SFRA, the updated draft Severn CFMP became available. Policy Unit 17: Cheltenham and North East Gloucester covers the northern extent of the Gloucester City Council area, which is heavily urbanised. The selected policy for this unit is Policy 5: ‘take further actions to reduce risk (now and/or in the future).’ Specifically, the policy unit identifies opportunities to implement SUDS within urban areas and the level of flood preparedness (flood warning, flood proofing and flood resilience) should be increased and promoted in this area. An increase in targeted channel maintenance has also been identified as an opportunity in some areas to decrease debris build up in channel and help reduce incidents of blockage and resultant flooding.

Severn Tidal Tributaries CFMP

6.2.3 The Severn Tidal Tributaries CFMP has the same aims, objectives and vision of the Severn CFMP and the report has been completed by the Environment Agency.

6.2.4 The south western side of Gloucester City Council falls in policy unit area 3 of the Severn Tidal Tributary CFMP (Gloucester, Quedgeley and Gloucester Streams). Here, the Environment Agency’s policy is ‘to take further action to reduce flood risk’ (as with the policy unit for the north of the area). The social consequences of the 1% AEP (1 in 100 year) event are high as floodwaters are deep and fast-flowing and are considered a risk to life. With existing flood risk management, the annual average damage of flooding to property is expected to increase due to climate change and urbanisation. In 100 years time up to 382 extra properties will be flooded during a one per cent annual probability flood event, leading to a £16 million (17 per cent) increase in damages. Flood depths and velocities will increase and be more widespread, increasing the risk to life. Due to the current and future consequences of flooding in urban areas to the north, east and south of Gloucester city centre itself, the preferred response is to reduce flood risk. Apart from the use of defences, there are opportunities for the Council to assist in the reduction of risk by vigorously applying PPS25, promoting the use of SUDS, and increasing flow attenuation within channels and seeking opportunities for flood storage by seeking to ensure that Flood Zones 2 and 3 remain undeveloped where possible and reinstating areas of functional floodplain which have been developed (e.g. reduce building footprints or relocate to lower flood risk zones). In terms of existing developments, the Council should promote understanding of flood risk and its management so that communities are aware of the steps they can take to reduce the risk.

6.3 Shoreline Management Plans

6.3.1 Shoreline Management Plans (SMPs) are very similar to CFMPs, but deal with the flood risk management of a shoreline rather than a river catchment. The Severn Estuary Shoreline Management Plan outlines strategic policies for coastal defence for the short and long term (50 years). The western boundary of Gloucester is affected along its length by the Severn Estuary Shoreline.

6.3.2 In the short term, the Environment Agency’s policy is to ‘hold the line’, that is, settlements and other features or assets will continue to be protected to an appropriate level by maintenance of the existing defences. In the long term, however, the policy is to retreat the line. This will involve moving defences away from their current position to a location further away from the riverbank. No substantial areas for
Strategic Flood Risk Assessment

Gloucester City Council

retreat are specifically identified, although some proposals are made, particularly in agricultural areas away from settlements or major infrastructure. The policy of retreat will, however, be constrained by how much settlements, infrastructure or other interests can be defended locally.

6.4 Flood Risk Management Strategies

6.4.1 The Environment Agency also produces flood risk management strategies, which aim to deliver strategic options for flood risk management. Aims of strategies generally include the following:

- To identify a 100 year framework for sustainable management of flood risk
- To provide a five year plan for capital investment on a project level for flood risk management
- To identify measures to maximise the environmental/social enhancement opportunities

The Severn Fluvial Strategy

6.4.2 The Environment Agency produced a flood risk management strategy for the fluvial section of the River Severn (i.e. from the headwaters to the downstream limit of the weirs at Gloucester) in October 2006. The strategy provides a fifty-year framework for the management of flood risk within the fluvial Severn study area and a five-year plan for capital investment on project level flood defence/management.

6.4.3 However, flood risk management in Gloucester was not considered within the study, as the Gloucester Flood Risk Management Strategy will provide more detailed analysis of flood risk and management options for the city. This is being progressed by the Environment Agency in 2008 and will take approximately 2 years to complete. This will consider flood risk management options for Gloucester as a whole.

The Severn Tidal Strategy

6.4.4 The Environment Agency has produced a flood risk management strategy for the tidal section of the River Severn, that is, from the weirs at Gloucester. As with the fluvial strategy, it provides a fifty-year framework to manage flood risk and provide a short-term plan for investment into flood risk management schemes.

6.4.5 The east and west bank of the River Severn from the weirs at Gloucester have been split into 39 units, each of which were assessed for preferred flood risk management options. In total, eight units appear within Gloucester City Council’s boundary and collectively these cover the entire stretch of east of west banks of the River Severn as it flows through Gloucester.

6.4.6 For all but one of the units, the preferred option is to continue with current flood warning, as a means of flood risk management for the next 50 years. This is except for the unit ‘East Llanthony Weir to Rea’ unit (essentially the western side of the City) where the option is to continue with current maintenance practices and provide flood warning. Overall, over the next 50 years the Environment Agency will not radically change the way they manage tidal flood risk from the Severn in Gloucester. These findings are also summarised in Chapter 11.
The Environment Agency has commenced work on a strategy for flood risk management for the Severn Estuary\(^{13}\). The strategy will cover the estuary from Gloucester to Lavernock point near Cardiff and from Gloucester to Hinkley Point in Somerset. The main objectives of the strategy are:

- To decide where to locate new intertidal habitats to compensate for coastal squeeze
- To define a 100 year plan of investment for flood defences by the Environment Agency and local authorities
- To prioritise all flood risk management measures such as advice to utilities, abandonment of defences, development control advice and flood warning investment

Once the strategy has been approved by the Environment Agency board, Defra and the Welsh Assembly Government (WAG), it will guide much of the work that is undertaken by the Environment Agency in the estuary. It is anticipated that the draft strategy will be submitted for external consultation in Autumn 2009. It is recommended that the SFRA be updated to incorporate the findings of the draft and final strategy upon completion.

Summary of Environment Agency Policies and Options

To summarise, the general direction of the Environment Agency is that Gloucester will continue to be defended against flood risk, both now and in the future. The Environment Agency's policy for Gloucester City Council is to take further action to reduce flood risk, due to the current and future consequences of flooding in urban areas to the north, east and south of Gloucester city centre itself. Apart from the use of defences, there are opportunities for the Council to assist in the reduction of risk by vigorously applying PPS25, promoting the use of SUDS, increasing flow attenuation within channels and seeking opportunities for flood storage by seeking to ensure that Flood Zones 2 and 3 remain undeveloped where possible and reinstating areas of functional floodplain which have been developed (e.g. reduce building footprints or relocate to lower flood risk zones). In addition, the level of flood preparedness (flood warning, flood proofing and flood resilience) should be increased and promoted in this area. An increase in targeted channel maintenance has also been identified as an opportunity in some areas to decrease debris build up in channel and help reduce incidents of blockage and resultant flooding.

The implementation of Surface Water Management Plans (SWMPs) would be a first step in realising the sustainable management of surface water in both new development and existing developed areas. It is recommended that the Council considers the production of a SWMP for Gloucester.

It is important that the Council reviews the Gloucester Strategy once the Environment Agency has produced this document, and takes on board the preferred policies and options for flood risk management in Gloucester City Council. While the general direction of flood risk management is not likely to change from that stated above, more detail may be provided regarding specific places in the Council area.

\(^{13}\) Environment Agency Severn Estuary Flood Risk Management Strategy – Briefing note No 1: May 2008
6.6 Flood Defences

6.6.1 Flood defences are structures which affect flow in times of flooding and therefore prevent water from entering property. They generally fall into one of two categories: ‘formal’ or ‘informal’. A ‘formal’ defence is a structure which has been specifically built to control floodwater. It is maintained by its owner (this is not necessarily the Environment Agency) so that it remains in the necessary condition to function. An ‘informal’ defence is a structure that has not necessarily been built to control floodwater and is not maintained for this purpose. This includes road and rail embankments and other linear infrastructure (buildings and boundary walls) which may act as water retaining structures or create enclosures to form flood storage areas in addition to their primary function. A study of informal defences is also included in this section. Should any changes be planned in the vicinity of road or railway crossings over rivers in the study, it would be necessary to assess the potential impact on flood risk to ensure that flooding is not made worse either upstream or downstream. Smaller scale informal defences should be identified as part of site-specific detailed FRAs and the residual risk of their failure assessed.

6.6.2 The reduction in flood risk that a defence provides depends on the standard of protection (SoP) (the return period against which a defence offers protection) and the performance and reliability of the defence. Flooding may still occur in defended areas if the defence is overtopped or breached, or if flooding occurs as a result of non-fluvial sources such as groundwater flooding, surface water flooding or poor drainage. Development behind defences should, therefore, be planned with due regard to the flood risk in the defended area. This will need to be facilitated by a Level 2 SFRA.

6.6.3 In accordance with the scope of a Level 1 SFRA, a high level review of formal flood defences has been carried out using data from the National Flood and Coastal Defence Database (NFCDD) and information from the Council. NFCDD is a good starting point for identifying significant flood defences and potential areas benefiting from defence, but the quantity and quality of information provided differs considerably between structures. The NFCDD is intended to give a reasonable indication of the condition of an asset and should not be considered to contain consistently detailed and accurate data (this would be undertaken as part of a Level 2 SFRA where the need arises).

6.6.4 There are a number of locations at risk of flooding that are currently protected by permanent defences within the Council area and these can be viewed in Volume 2, Tiles A1-A4. Table 6.1 provides details of the existing defences within the study area that are contained within the Environment Agency’s NFCDD database.

6.6.5 Table 6.1 demonstrates that there are a number of sea defences within the study area. The tributaries of the River Severn would be at risk of tidal flooding every high tide if the extensive embankments, defences and tidal outfall flaps and gates used to keep the tidal water were not there. Following the severe flooding of 1981, the Avonmouth to Worcester improvements scheme was commissioned by Severn Trent Water and consisted of a phased construction of defences including earth embankments and flood walls. Although the scheme was never completed, most of the Lower Severn catchment is now protected by some form of defence, whether it is a floodwall, earth embankment, infrastructure acting as a defence or high ground (Volume 2, Tiles A1-A4). Many locations are also protected by natural high ground and structures which act as a line of defence but are not under the Agency’s responsibility to operate or maintain (e.g. the railway line). Any failure of these structures could potentially cause or exacerbate flooding problems.
Table 6.1: Environment Agency NFCDD Defences within Gloucester City Council area

<table>
<thead>
<tr>
<th>Watercourse</th>
<th>Location</th>
<th>NGR Upstream</th>
<th>NGR Downstream</th>
<th>Type of Defence</th>
<th>Owner</th>
<th>SOP</th>
<th>Approx. Length (m)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wotton brook</td>
<td>Cole bridge, B4063</td>
<td>SO 8465 1913</td>
<td>SO 8453 1970</td>
<td>Raised defence</td>
<td>Local Authority</td>
<td>-</td>
<td>582.4</td>
<td>Natural channel. On right bank.</td>
</tr>
<tr>
<td>Horsbere brook</td>
<td>Upstream Innsworth Lane</td>
<td>SO 8569 2059</td>
<td>8562 2061</td>
<td>Raised defence</td>
<td>Environment Agency</td>
<td>-</td>
<td>67.4</td>
<td>Approximately 35m Length, Concrete with Sheet Piled, Retaining Wall. On right bank.</td>
</tr>
<tr>
<td>Horsbere brook</td>
<td>Larkhay Road</td>
<td>SO 8735 1796</td>
<td>SO 8732 1802</td>
<td>Raised defence</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>Concrete block wall for approx 40m, on right bank.</td>
</tr>
<tr>
<td>River Severn (East channel)</td>
<td>Pool Meadow, Alney Island. Rear of factory Westend Parade, adjacent to Westgate Bridges</td>
<td>SO 8238 1927</td>
<td>SO 8238 1909</td>
<td>Raised defence</td>
<td>Environment Agency</td>
<td>1:100 years</td>
<td>234.6</td>
<td>Combination of concrete flood defence walls and Tarmac raised on existing footpath on right bank.</td>
</tr>
<tr>
<td>River Severn (East channel)</td>
<td>Alney Island (Pool Meadow) through and under A417</td>
<td>SO 8225 1915</td>
<td>SO 8223 1910</td>
<td>Flood defence structure</td>
<td>Unknown</td>
<td>1:100 years</td>
<td>50.6</td>
<td>Existing armco flood relief culvert (4 sections of specified length)</td>
</tr>
<tr>
<td>River Severn (East channel)</td>
<td>Pool Meadow, Alney Island Adjacent A417 on track to Richards Wood</td>
<td>SO 8218 8920</td>
<td>SO 8222 1917</td>
<td>Raised defence</td>
<td>Environment Agency</td>
<td>1:100 years</td>
<td>54.9</td>
<td>Flood Defence Wall – concrete on right bank.</td>
</tr>
<tr>
<td>Watercourse</td>
<td>Location</td>
<td>NGR</td>
<td>Type of Defence</td>
<td>Owner</td>
<td>SOP</td>
<td>Approx. Length (m)</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----------------</td>
<td>-------</td>
<td>-----</td>
<td>-------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>River Severn (East channel)</td>
<td>Sud Meadow, Sud Meadow Road.</td>
<td>SO 8215 1815</td>
<td>SO 8209 1834</td>
<td>Raised defence</td>
<td>Environment Agency</td>
<td>1:25 years</td>
<td>208.4 Blockwork floodwall and concrete on left bank.</td>
<td></td>
</tr>
<tr>
<td>River Severn</td>
<td>Sud Meadow</td>
<td>SO 8209 1834</td>
<td>SO 8159 1881</td>
<td>Raised defence</td>
<td>Environment Agency</td>
<td>-</td>
<td>772.5 Earth embankments on left bank.</td>
<td></td>
</tr>
<tr>
<td>River Severn</td>
<td>Transition Between H’ Tip & Sudmeadow Rd, Upper Rea Middle O/F To Hempsted D/S O/F</td>
<td>SO 8159 1881</td>
<td>SO 8064 1709</td>
<td>Raised defence</td>
<td>Environment Agency</td>
<td>1:1 years</td>
<td>2538.6 Combination of earth embankments on left bank.</td>
<td></td>
</tr>
<tr>
<td>River Severn</td>
<td>Upper Rea Farm to Upper Rea Middle Outfall and along side of the access road into the Rea Hamlet.</td>
<td>SO 8064 1709</td>
<td>SO 8092 1643</td>
<td>Raised defence</td>
<td>Environment Agency</td>
<td>1:50 years</td>
<td>1123.7 Combination of earth embankments on left bank.</td>
<td></td>
</tr>
<tr>
<td>River Severn</td>
<td>Upper Rea, South of Gloucester near Hempstead</td>
<td>SO 8092 1643</td>
<td>SO 8090 1614</td>
<td>Raised defence</td>
<td>Unknown</td>
<td>-</td>
<td>296.1 Natural High Ground with lower lying ground behind.</td>
<td></td>
</tr>
<tr>
<td>River Severn</td>
<td>The Rea, South of Gloucester near Hempstead, Start of formal Flood Defences</td>
<td>SO 8090 1614</td>
<td>SO 8088 1611</td>
<td>Raised defence</td>
<td>Environment Agency</td>
<td>-</td>
<td>30.5 Earth Embankment Defence, Behind the Rea Slipway.</td>
<td></td>
</tr>
</tbody>
</table>
6.6.6 In addition to this information, the Council has supplied details of council-owned defences and flood alleviation schemes. A flood relief channel and control structure was constructed along Daniel’s Brook in the early 1990s to provide protection to properties located along the north bank. No flooding had been recorded on Daniels Brook since the relief channel and control structure were completed, however, during the summer 2007 floods a significant number of properties at this location experienced flooding from both the brook itself and the flood relief channel.

Informal Defences

6.6.7 Road and railway embankments and other linear infrastructure may act as informal defence and divert flood water elsewhere, hold back water or create enclosures to form flood storage areas. Raised embankments may also offer a degree of flood protection. An overview assessment of informal defences (primarily railways and major roads) within the study area has been undertaken as part of this SFRA. Locations identified can be viewed in Volume 2, Tiles A1-A4.

6.6.8 Informal defences should only be relied upon to protect new development following an FRA as outlined within the PPS25 Practice Guide (Paragraph 6.17) (2006). This should investigate:

- The suitability of the embankment materials to prevent seepage of water, and whether it is physically strong enough to withstand the pressure of water on one side
- An assessment as to whether there are any culverts through the embankment or other gaps within the structure that may let water through
- The performance of the structure during recent historical flood events
- The long-term Asset Management Plan (AMP) provided by the owner of the embankment
- Whether by holding water back, the structure may fall under the regulation requirements of the Reservoirs Act (1975).

6.6.9 Only major structures such as motorways and railways acting as informal defences have been identified within this Level 1 SFRA. An assessment of all informal defences should be made as part of an FRA.

6.7 Culverts

6.7.1 Sections of culverted watercourse as identified within NFCDD are illustrated in Volume 2, Tiles A1-A4 and detailed in Table 6.2. It is still possible, however, that culverts exist which are not identified on NFCDD. Therefore when locating development, OS tiles should be analysed to identify any culverts in the vicinity of development sites. In some cases site visits may be required. Further details of the implications of culverts on new development can be found in Section 6.9.

6.7.2 On any new development site and indeed on existing sites, further culverting and building over of culverts should be avoided. All new developments with culverts running through their site should seek to de-culvert rivers for flood risk management and conservation benefit.
Table 6.2: Culverted Watercourses as identified within NFCDD

<table>
<thead>
<tr>
<th>Watercourse</th>
<th>Location</th>
<th>NGR</th>
<th>Owner</th>
<th>Approx. Length (m)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary of Wotton brook</td>
<td>Trib under Eastern Avenue</td>
<td>SO 8510 1796</td>
<td>Local Authority</td>
<td>61.9</td>
<td>Highways maintained road. 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>Tributary of Wotton brook</td>
<td>Cul exit - Cul Entr School Play Field</td>
<td>SO 8541 1763</td>
<td>Local Authority</td>
<td>97.1</td>
<td>Pipe culvert under public space. 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>River Twyver</td>
<td>Cul Exit Walham Ln-Cul Entr Walham Ln</td>
<td>SO 8315 1975</td>
<td>Environment Agency</td>
<td>71.5</td>
<td>Ord w/c lb - culvert thru ind/res area</td>
</tr>
<tr>
<td>River Twyver</td>
<td>D/S Cul Walham Ln-U/S Cul Off Deans Way</td>
<td>SO 8320 1969</td>
<td>Local Authority</td>
<td>501.5</td>
<td>2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>River Twyver</td>
<td>From Millbook st. school to Kingsholm through town.</td>
<td>SO 8340 1911</td>
<td>Local Authority</td>
<td>1236.3</td>
<td>Culverted channel, 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>River Twyver</td>
<td>D/Scul Derby Rd-Cul U/S Pw Off Derby Rd</td>
<td>SO 8413 1802</td>
<td>Local Authority</td>
<td>65.7</td>
<td>Culverted brick box channel, 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>River Twyver</td>
<td>Alfred street</td>
<td>SO 8422 1781</td>
<td>Local Authority</td>
<td>16.9</td>
<td>Highways maintained boxed concrete culvert, 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>River Twyver</td>
<td>Under Overbury road and private gardens.</td>
<td>SO 8433 1765</td>
<td>Local Authority</td>
<td>71.7</td>
<td>Highways maintained boxed concrete culvert with brick headwall. 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>River Twyver</td>
<td>Under Bishops Castle way</td>
<td>SO 8443 1758</td>
<td>Local Authority</td>
<td>101.9</td>
<td>Concrete box culvert, on left and right bank.</td>
</tr>
<tr>
<td>River Twyver</td>
<td>Subway Hall</td>
<td>SO 8449 1739</td>
<td>Local Authority</td>
<td>215.1</td>
<td>Highways maintained, 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>River Twyver</td>
<td>Tern Close, Hawthorne Avenue</td>
<td>SO 8544 1687</td>
<td>Environment Agency</td>
<td>36.5</td>
<td>Round road culvert. 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>Sud brook</td>
<td>Ofall Sharpness Cnln-Cul Ent U/S A430</td>
<td>SO 8252 1788</td>
<td>Local Authority</td>
<td>423.9</td>
<td>Culverted channel. 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>Sud brook</td>
<td>Trier Way</td>
<td>SO 8298 1777</td>
<td>Local Authority</td>
<td>179</td>
<td>Highways culvert and concrete channel</td>
</tr>
<tr>
<td>Sud brook</td>
<td>Parkend Road culvert</td>
<td>SO 8330 1758</td>
<td>Local Authority</td>
<td>61.3</td>
<td>2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>Sud brook</td>
<td>Tredworth, Morphet Street</td>
<td>SO 8335 1756</td>
<td>Local Authority</td>
<td>681.5</td>
<td>Culvert channel maintained by riparian owners. 2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>Sud brook</td>
<td>Under The Lampreys and A38.</td>
<td>SO 8443 1673</td>
<td>Local Authority</td>
<td>79.9</td>
<td>2 sections of approx specified length on left and right bank.</td>
</tr>
<tr>
<td>Sud brook</td>
<td>Adjacent to Lampreys</td>
<td>SO 8457 1667</td>
<td>Environment Agency</td>
<td>45.4</td>
<td>Ord W/C LB-culvert. 2 sections of approx specified length on left and right bank.</td>
</tr>
</tbody>
</table>
6.8 Storage Areas

6.8.1 Storage in a catchment is often considered as an important flood management option. Storage can have the effect of delaying the time at which the peak of a hydrograph occurs. Delaying the peak of one hydrograph can alter the phasing of the other hydrographs in a system. Altering the phasing of peaks may mean that it is possible to stop the peak flow from one tributary combining with that of another. This can have the effect of reducing peak flow, and therefore flooding, in the main channel.

6.8.2 A number of flood storage areas are situated along the River Severn. These are areas of natural, low lying topography bounded by high ground, with earth embankments along the edge of the river. These earth embankments have a SoP of typically 1 in 20 years (or less). During a flood event, water from the River Severn spills into the storage areas and is contained by a series of high embankments. They function by removing large volumes of flood water, retaining it, and then allowing it to drain back to the main channel via flapped outfalls and sluice gates after the peak of the flood event. Key storage cells located within the Gloucester City Council area include: Hempstead (SO 8144 1791) and Weir Green (SO 7959 1470) and these have been mapped in Volume 2, Tiles A1-A4. It should be noted that the Weir Green flood storage cell extends into Stroud District Council. It is imperative that any storage areas used as a means of attenuation of flood waters are safeguarded from development and maintained to ensure their efficient operation during a flood event. If the storage areas are not maintained this may lead to an increased risk of flooding at locations downstream.

6.8.3 Saintbridge balancing pond is located along the River Twyver. At Abbeydale the main river is split by a man-made structure designed to carry excess flow down a diversion channel and on into the Saintbridge balancing pond located between the Flood Relief Channel and the main Twyver river channel.
6.9 Residual Risk

6.9.1 In producing Flood Zone maps the Environment Agency takes the presence of defences into account by showing the area that benefits from the defence (ABD). This area can also be deemed an area which is at risk of defence overtopping or failure. It can therefore also be described as a residual risk zone. Residual flood risks from defences can arise due to:

- The failure of flood management infrastructure such as a breach of a raised flood defence
- A severe flood event that exceeds a flood management design standard and results in, for example, overtopping
- Issues with deployment of flood defences and pump failure

6.9.2 No ABDs have been mapped within Gloucester City Council. This does not mean, however, that there are no areas of residual risk. There will be areas of residual risk associated with any defence, and there are a number of defences in the Council’s area. An assessment of residual risk should therefore be made at the site-specific level. Actual levels of residual risk will vary spatially depending on flow routes, velocities, flood depths and proximity to the breach or overtopping location. In the event that development is located in or near a residual risk areas (e.g. behind a defence) the scope of the SFRA should be extended to a Level 2 assessment to refine information on the flood hazard in these locations. Known defence locations are mapped in Volume 2, Tiles A1-A4 to assist with this.

6.9.3 Residual risks can also arise from the following sources:

- Blockage or collapse of a culvert
- Blockage of a surface water conveyance system
- Overtopping of an upstream storage area
- Failure of a pumped drainage system
- Surcharging of surface water conveyance systems and SUDS systems, drainage networks

6.9.4 There is currently no dataset which identifies precise residual risk areas from these sources, therefore again any development in the vicinity of culverts, surface water conveyance systems, storage areas and pumped drainage systems should assess residual risk through a Level 2 SFRA. Known culvert locations are mapped in Volume 2, Tiles A1-A4. These should be referenced by those proposing development to identify the possibility of localised residual risks as well as opportunities for deculverting and restoring the natural channel. OS tiles should be analysed to identify any culverts in the vicinity of development sites which are not recognised in Volume 2, Tiles A1-A4. In some cases site visits may be required.

6.9.5 Poorly maintained trash screens and rubbish inappropriately dumped in watercourses can reduce culvert and structure capacity, therefore presenting residual risk. This can be mitigated by regular inspection and clearance of culverts and trash screens.

6.9.6 It is possible that old culverts exist in the study area. These pose a particularly high risk of collapse, therefore they pose residual risk. It is recommended that any development in the vicinity of culverts should assess the potential of deculverting. If this is not possible, an assessment of the structural
6.10 Existing Flood Warning System

6.10.1 One aspect of the Environment Agency’s work is reducing risks to people and to the developed and natural environment from flooding through flood forecasting, flood warning and response. The Environment Agency is the lead organisation on flood warning and they work closely with Local Authorities and Emergency Services to plan for flooding emergencies and reduce the risk of flooding to people and properties. Gloucester falls within the Midlands Region of the Environment Agency.

6.10.2 When conditions suggest that floods are likely, it is the responsibility of the Environment Agency to issue flood warnings to the Police, Fire and Rescue Service, to the relevant local authorities and to the public. It is the responsibility of individuals in the community to receive flood warnings via Floodline Warnings Direct (FWD) which passes messages over the telephone network, email, fax and text message.

6.10.3 A flood warning system is in operation for the main rivers within the Gloucester administrative area and is outlined below in four stages.

- **Flood Watch**: Flooding of low lying land and roads is expected. Be aware, be prepared, watch out! The following actions are recommended:
 - Watch water levels
 - Stay tuned to local radio or TV
 - Ring Floodline on 0845 988 1188
 - Make sure you have what you need to put your flood plan into action
 - Alert your neighbours, particularly the elderly
 - Check pets and livestock
 - Reconsider travel plans

6.10.4 Flood Watch Areas can be seen in Volume 2, Tile F1. Flood Watches are issued for expected flooding, which could occur anywhere within the Flood Watch Area but with low or minor impact. The trigger for Flood Watch is a forecast that flooding of low impact land is expected.

- **Flood Warning**: Flooding of homes and businesses is expected. A Flood Warning could be issued at any time, a Flood Watch may not necessarily be issued first. Act now! The following actions, in addition to those associated with Flood Watch, are recommended:
 - Move pets, vehicles, food, valuables and other items to safety
 - Put sandbags or floodboards in place
 - Prepare to turn off gas and electricity
 - Be prepared to evacuate your home
Protect yourself, your family and others that need your help

- **Severe Flood Warning**: Severe flooding is expected. A Severe Flood Warning could be issued at any time; a Flood Warning may not necessarily be issued first. There is extreme danger to life and property. Act now! The following actions, in addition to those associated with Flood Warning, are recommended:
 - Be prepared to lose power supplies - gas, electricity, water, telephone
 - Try to keep calm, and to reassure others, especially children
 - Co-operate with emergency services and local authorities
 - You may be evacuated

- **All Clear**: Flood Watches or Warnings are no longer in force. An All Clear can be issued at any stage e.g. a Flood Warning could be downgraded to All Clear without going to Flood Watch First. The following is recommended:
 - Flood water levels receding
 - Check all is safe to return
 - Seek advice

6.10.5 Table 6.3 details the flood warning coverage within the Gloucester administrative area.

Table 6.3: Flood Warning coverage within Gloucester City Council

<table>
<thead>
<tr>
<th>Type of Warning</th>
<th>Coverage</th>
<th>EA Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Watch</td>
<td>River Severn in Gloucestershire - from Tewkesbury to Gloucester</td>
<td>Midlands</td>
</tr>
<tr>
<td>Flood Watch</td>
<td>Rivers in Tewkesbury, Cheltenham and Gloucester</td>
<td>Midlands</td>
</tr>
<tr>
<td>Flood Watch</td>
<td>Severn Estuary Tidal</td>
<td>Midlands</td>
</tr>
<tr>
<td>Flood Warning</td>
<td>River Severn at Gloucester A</td>
<td>Midlands</td>
</tr>
<tr>
<td>Flood Warning</td>
<td>Tidal River Severn at Gloucester A</td>
<td>Midlands</td>
</tr>
<tr>
<td>Flood Warning Update</td>
<td>River Severn at Gloucester B</td>
<td>Midlands</td>
</tr>
<tr>
<td>Flood Warning Update</td>
<td>Tidal River Severn at Gloucester B</td>
<td>Midlands</td>
</tr>
<tr>
<td>Severe Flood Warning</td>
<td>Tidal River Severn at Gloucester</td>
<td>Midlands</td>
</tr>
<tr>
<td>Severe Flood Warning</td>
<td>The River Severn at Gloucester including Sandhurst and Maisemore</td>
<td>Midlands</td>
</tr>
</tbody>
</table>
6.11 Flood Response Plan

County Council Flood Response Plan

6.11.1 Gloucestershire County Council owns and operates a number of contingency plans, each detailing how local services will work together to respond to any type of emergency. Every plan is regularly updated and also thoroughly revised at regular intervals. The ‘Major Flooding Emergency Plan’ aims to detail the roles, responsibilities and actions to be taken by Category One responders in both the mitigation of and response to a major flooding emergency in Gloucestershire. It reflects the known risks of flooding within the County of Gloucestershire, details the response actions of Local Authorities to incidents of flooding and summarises the response of the emergency services and other agencies. Gloucestershire County Council has prepared the plan in close consultation with the Gloucestershire Local Resilience Forum (LRF), to comply with the statutory duties of the Civil Contingencies Act 2004 and the National Capabilities Programme guidance.

6.11.2 The first section gives the background information to the plan. The Gloucestershire LRF Risk Assessment Subgroup has assessed the potential Impact and Likelihood of a Major Flooding Emergency affecting Gloucestershire as follows:

Table 6.4: Potential Impact and Likelihood of a Major Flooding Emergency affecting Gloucestershire

<table>
<thead>
<tr>
<th>Severe Weather</th>
<th>(SW7) Localised coastal / tidal flooding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome description</td>
<td>Impact</td>
</tr>
<tr>
<td>See surge, high tides, gale force winds affecting the coastline, some defences overtopped. Localised impact with infrastructure affected and up to 1,000 properties flooded. Multi-agency response involved with some local evacuation. Impact on infrastructure includes disruption to traffic for one-three days, impact on access to agricultural land and impact to infrastructure.</td>
<td>Significant (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severe Weather</th>
<th>(SW8) Major local fluvial flooding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome description</td>
<td>Impact</td>
</tr>
<tr>
<td>A sustained period of heavy rainfall extending over two weeks, perhaps combined with snow melt, resulting in steadily rising river levels. Localised flooding of more than 100 but less than 1,000 properties. Some impact on minor roads and some A and trunk roads impassable. Some rail lines would be closed. Most waterways would be closed to traffic due to strong currents and water levels.</td>
<td>Moderate (3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severe Weather</th>
<th>(SW8) Major local fluvial flooding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome description</td>
<td>Impact</td>
</tr>
<tr>
<td>A sustained period of heavy rainfall extending over two weeks, perhaps combined with snow melt, resulting in steadily rising river levels. Localised flooding of more than 1,000 and less than 10,000 properties. Major impact on minor roads and some A and trunk roads impassable. Some rail lines would be closed. Most waterways would be closed to traffic due to strong currents and water levels.</td>
<td>Moderate (3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severe Weather</th>
<th>(SW9) Localised fluvial flooding (flash flooding)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome description</td>
<td>Impact</td>
</tr>
<tr>
<td>Heavy localised rainfall in steep valley catchment leading to flash flooding. Likely that no flood defences in place. Possibility no flood warning service available / suddenness of events means timely flood warnings not possible. Flooding of up to 200 properties.</td>
<td>Moderate (3)</td>
</tr>
</tbody>
</table>

Source: Gloucestershire LRF Community Risk Register

6.11.3 The plan goes on to give details of flood warning and mitigation (as presented in Section 6.10), then gives information on immediate response. This details the roles and responsibilities of the County Council, LPAs, Gloucestershire Constabulary, Gloucestershire Fire and Rescue Service, Great Western Ambulance Service, the Environment Agency, British Waterways, utility companies, Gloucestershire Primary Care Trust, the media and the general public are put forwards.

6.11.4 Of particular relevance is the LPA roles and responsibilities. The primary role of local authorities in responding to any emergency is to provide care and support for those affected. They deliver this through close working partnerships with the emergency services and other agencies involved in the combined response. In Gloucestershire both the District Councils and the County Council’s involvement may be required in responding to a flooding emergency. The District Councils, as land drainage authorities, are primarily responsible for assisting with flooding to property, whereas the County Council is primarily responsible with flooding on the highway.

6.11.5 The Area Highways Managers within Gloucestershire Highways will deal with flooding of highways. Each of the Area Depots has a stockpile of sandbags and a supply of sand, which can be used to assist in preventing highway runoff entering houses, etc. District Councils provide different levels of out-of-hours service within the County in respect of the provision of sandbags to the public. The public are expected to take reasonable measures to protect their own property and to assist this public information has been disseminated. Response may be provided at a County and/or District level as summarised in the Table 6.5. In principle, Districts will provide the service and the County will support unless the incident severely affects more than one District such that County resources are required.

Table 6.5: County and District Flood Response Responsibilities

<table>
<thead>
<tr>
<th>Required Response</th>
<th>County Responsibility</th>
<th>District Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-ordination of the local authority response and liaison with other organisations, including provision if required of a representative to support Police arrangements for coordination</td>
<td>✓ Or</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency care including feeding, accommodation and welfare for those who have been evacuated from their homes or those affected by flooding but remaining in their homes</td>
<td>✓ And</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency transport for personnel, equipment, materials such as sandbags and, if necessary, evacuation</td>
<td>✓ And</td>
<td>✓</td>
</tr>
<tr>
<td>Information services for liaison with the media on the local authority response and for information to the public, relatives of evacuees etc.</td>
<td>✓ Or</td>
<td>✓</td>
</tr>
<tr>
<td>Flood alleviation – for flood prevention, such as issuing of sandbags, clearance of blocked culverts, for dealing with flooded roads and diversions and for other assistance to the public, such as drying-out facilities, and issuing of sandbags</td>
<td>✓ And</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency environmental health advice for action relating to environmental problems caused by flooding</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Joint agency co-ordination of non-life threatening floods and of the recovery phase following a flooding incident</td>
<td>✓ Or</td>
<td>✓</td>
</tr>
<tr>
<td>Co-ordination of the voluntary response</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
6.11.6 As the emphasis moves from the immediate response to the recovery phase, the local authority will take the lead role to facilitate the rehabilitation of the community and the restoration of the environment. Involvement may include the provision of welfare needs and access to appropriate personal, social, psychological and financial support.

6.11.7 Where there is a need to evacuate people the District Council for the area concerned has the responsibility for providing Rest Centres and the provision of transport. It is recognised that during a sudden onset emergency the public may be evacuated to any site deemed necessary by the emergency services. As such the County and District Councils will work together to provide what support is deemed necessary at that site and arrange transport to transfer to a designated Rest Centre.

Gloucester City Council Flood Response Plan

6.11.8 Gloucester City Council works in partnership with agencies, Government Departments and other local authorities both internally and externally to provide up-to-date information on emergencies as they arise within Gloucestershire. The aim of the City Council is to be able to respond to and support the Emergency Services in the event of a major emergency, as well as assist those affected by the emergency, have a full training plan in place for emergencies and be fully trained to respond to emergencies when they occur.

6.11.9 Major incidents fall into 3 phases:

- Phase 1: Reaction. Immediate reaction to the incident primarily involving the emergency services taking action to safeguard life and protect property
- Phase 2: Response. Emergency services seek assistance from the City Council and other agencies
- Phase 3: Recovery. Restoring normality, withdrawing of emergency services, counselling and restoring/rebuilding damaged structures and utilities

6.11.10 The City Council response aims to minimise the impact on the local community by:

- Co-ordinating the demands upon its resources in its efforts to maintain/restore services for which it is responsible
- Co-operate closely with emergency services
- Provide help and support directly to the victims of the emergency and assist agencies involved in the relief effort

6.11.11 Emergency Team Leaders can be contacted at the Docks offices during normal office hours, numbers of which are provided on the Council’s website. A telephone number for out of hours emergencies is also provided.

6.11.12 Regarding flooding in Gloucester, the Council’s website provides links to the latest flood and water supply information, including advice on what to do if you have been flooded and general flooding information. The City Council’s role, as part of an emergency planning structure, is to care for people who have been evacuated from premises subject to flooding. Such action is triggered by a request from the police or other uniformed service. In this event, the City Council, along with County Council
Strategic Flood Risk Assessment

Gloucester City Council

support, will open a ‘rest centre’, normally in a school or leisure centre. Should residents not be able
to return home in the near future, the City Council will assist them to find temporary accommodation.
The City Council will also seek to provide temporary toilets if residents are remaining in their homes
but unable to use their own toilets. The City Council will also clean the roads after the flooding has
subsided.

6.11.13 Based on river levels the council will deliver sandbags to ‘at risk’ homes as detailed in its emergency
flood plan. Depending on weather reports it will also provide sandbags to other areas with a known
flood problem. The council will also respond to requests for help and assistance from the emergency
services.

6.11.14 The Council’s website also gives details of flood warning, and provides a link to flood warnings for
Gloucester. Information on how to prepare for a flood event is also provided. The website
recommends that those at risk of flooding prepare by protecting themselves, their families and their
property by moving vehicles, valuables and pets out of danger, as well as turning off gas and
electricity, sandbagging doors and air bricks and having emergency phone numbers to hand in order
to help prepare for flooding and reduce the impact.

6.11.15 Further, the Council website offers advice on how preparedness can limit flood damage. It advocates
the use of sandbags or proprietary flood proofing systems and the storing of valuables in high places.
A link to details of the Environment Agency’s flood proofing guide is also provided. It states that other
longer-term flood resilience options might include raising floor levels, raising electrical sockets,
waterproofing walls and floors and other similar activities.

6.11.16 Following the summer 2007 flood events, the Council is currently updating the Emergency Plan.

Emergency Response Plan Recommendations

6.11.17 It is recommended that the Council’s Emergency Response Plan is reviewed and updated in light of
the findings of the SFRA to ensure that safe evacuation and access for emergency services is
possible during times of flood both for existing developments and those being promoted as possible
sites within the LDF process. It is further recommended that the Council works with the Environment
Agency to promote the awareness of flood risk to maximise the number of people signed up to the
FWD service (previously this has involved targeted mail shots to those identified as living within Flood
Zone 3a). Within the study area particular attention should be given to vulnerable people including
those with impaired hearing or sight and those with restricted mobility.

6.11.18 Following the summer 2007 flood events, it is recommended that a review of designated rest centres
and other major facilities should be carried out to ensure that they have the necessary levels of
resilience to enable them to be used in the response to flooding and other major emergencies, or that
alternative arrangements are put in place. A review of current local arrangements for water rescue
should also be carried out to consider whether they are adequate in light of the summer’s events and
the community risk register. Further, Local Resilience Forums should consider the vulnerability of
motorways and trunk roads to flooding and consider the potential for warnings and strategic road
clearance and closures to avoid people becoming stranded. Finally, the community risk register
should reflect risks to critical infrastructure from flooding and other hazards.

6.11.19 With respect to new developments, those proposing the development should take advice from the
Council’s emergency planning officer and for large-scale developments, the emergency services,
when producing an evacuation plan as part of a FRA. As a minimum these plans should include information on:

- **How flood warning is to be provided:**
 - Availability of existing warning systems
 - Rate of onset of flooding and available warning time and
 - Method of dissemination of flood warning

- **What will be done to protect the infrastructure and contents:**
 - How more easily damaged items could be relocated
 - The potential time taken to respond to a flood warning
 - Ensuring safe occupancy and access to and from the development
 - Occupant awareness of the potential frequency and duration of flood events
 - Provision of safe (i.e. dry) access to and from the development
 - Ability to maintain key services during an event
 - Vulnerability of occupants and whether rescue by emergency services may be necessary and feasible
 - Expected time taken to re-establish normal practices following a flood event

6.11.20 In some areas, particularly for existing properties and proposed developments behind defences, it may be necessary to extend the scope of the SFRA to Level 2. The outputs from detailed overtopping and breach analysis of the key defences will provide refined hazard information on flood depths, velocities and flow paths, which could be used by the LPA emergency planning teams to define new or refine existing emergency plans for these areas.
6.12 Key Recommendations: Chapter Six

- The relevant CFMP policies, outlined in the SFRA, should be taken into account in the Council’s own flood risk management policies.

- Development behind defences should be avoided. Where development behind defences is required, breach and overtopping scenarios will need to be assessed through a Level 2 SFRA.

- Informal defences (e.g. road and railway embankments) should only be relied upon to protect new development following an FRA, undertaken in accordance with paragraph 6.17 of the PPS25 Practice Guide (2006).

- Further culverting and building over of culverts should be avoided. All new developments with culverts running through their site should seek to de-culvert rivers.

- If de-culverting is not possible, an assessment of the state of the culvert should be made, and any remedial works carried out prior to the development of the site. In addition, the residual risk arising from a potential blockage of the culvert should be assessed through a Level 2 SFRA.

- Regular inspection and clearance of culverts and trash screens should be carried out to reduce the risk of blockage during a flood event, which can exacerbate flooding.

- Areas of extended floodplain, acting as natural storage areas, should be safeguarded from development and maintained to ensure their efficient operation during a flood event.

- Flood Zone 3b should be protected from development, the use of green corridors in flood risk areas should be promoted and the natural course of rivers should be restored. These will all act as a means of risk reduction and should be explored through the planning process.

- Any development in the vicinity of culverts, surface water conveyance systems, storage areas and pumped drainage systems should assess residual risk through a Level 2 SFRA.

- The Council’s Emergency Response Plan should be reviewed and updated in light of the findings of the SFRA to ensure that safe evacuation and access for emergency services is possible during times of flood both for existing sites and those being promoted through the LDF.

- The Council should work with the Environment Agency to promote the awareness of flood risk to maximise the number of people signed up to the Flood Warnings Direct service (previously this has involved targeted mail shots to those identified as living within Flood Zone 3a). Particular attention should be given to vulnerable people including those with impaired hearing or sight and those with restricted mobility.
7 Flood Risk Management Policy Considerations

7.1 Overview

7.1.1 This chapter provides recommendations for what should be included in the Council’s policy for flood risk management. Council policy is considered essential to ensure that the recommended development control conditions can be imposed consistently at the planning application stage.

7.1.2 The policy recommendations provided in this chapter are not exhaustive and it is therefore recommended that the Council refers to the following key flood risk management documents in order to fully inform their own flood risk management policies:

- **CFMPs** - strategic planning document through which the Environment Agency will work with other stakeholders to identify and agree policies for long-term flood risk management over the next 50 to 100 years.

- **Making Space for Water** - outlines the Government’s proposals for forward planning of flood management over the next 20 years advocating a holistic approach to achieve sustainable development. The protection of the functional floodplain is central to the strategy.

- **Water Framework Directive** - European Community (EC) water legislation which requires all inland and coastal waters to reach good ecological status by 2015.

7.2 Policy Considerations

7.2.1 A key aim of an SFRA is to define flood risk management objectives and identify key policy considerations. It should be noted that it is ultimately the responsibility of the Council to formally formulate these policies and implement them.

7.2.2 It is recommended that the following flood risk objectives are taken into account during the policy making process and, where appropriate, used to strengthen or enhance the development control policies provided in Section 7.3.

7.2.3 **Flood Risk Objective 1: To Seek Flood Risk Reduction through Spatial Planning and Site Design:**

- Use the Sequential Test to locate new development in least risky areas, giving highest priority to Flood Zone 1

- Use the Sequential Test and approach within development sites to inform site layout by locating the most vulnerable elements of a development in the lowest risk areas. For example, the use of low-lying ground in waterside areas for recreation, amenity and environmental purposes can provide an effective means of flood risk management as well as providing connected green spaces with consequent social and environmental benefits

- Ensure that a positive gain in floodplain storage capacity is provided on-site and ensure that there is no negative impact on flood conveyance routes
• Build resilience into a site’s design (e.g. flood resistant and resilient design, raised floor levels)
• Identify long-term opportunities to remove development from the floodplain through land swapping
• Ensure development is ‘safe’. For residential developments to be classed as ‘safe’, dry pedestrian access to and from the development should be possible without passing through the 1% AEP (1 in 100 year) plus climate change floodplain; emergency vehicular access should be possible during times of flood; and the development should include flood resistance and resilience measures to ensure it is safe. Residual risk, i.e. the risks remaining after taking the sequential approach and taking mitigating actions, during the 1 in 1000 year event, should also be ‘safe’.
• Avoid development immediately downstream/adjacent to reservoirs/impounded water bodies which will be at high hazard areas in the event of failure.

7.2.4 **Flood Risk Objective 2: To Reduce Surface Water Runoff from New Developments and Agricultural Land:**

• SUDS are required on all new development. Section 10.4 outlines appropriate SUDS techniques for the City Council and Chapter 9 provides further guidance for developers on the application of SUDS.
• As part of any ongoing or future development within the City, the treatment and control of surface water runoff should provide a level of betterment, incorporating the use of various SUDS techniques as outlined in section 10.4.
• All sites should meet the following criteria:
 - As a minimum there should be no increase in the peak discharges/volumes from any existing Greenfield site and at minimum a 20% reduction of peak discharges/volumes from any existing Brownfield site where an existing positive drainage system has been identified
 - Attenuation should be provided to a 1 in 100 year standard taking account of climate change
 - Space should be specifically set aside for SUDS and used to inform the overall site layout
 - Promote environmental stewardship schemes to reduce water and soil runoff from agricultural land

 However, a greater level of betterment may be required within specific locations or areas of the county where necessary due to local issues as identified by any local authority or other appropriate drainage authority.
• All sites require the following approach to be taken:
 - Application of a SUDS management train is required
 - A hierarchical approach should be applied to the SUDS used:
 1. Preventative measures to ensure that there are not unnecessary impermeable areas on-site
2. Source control measures such as rainwater harvesting and infiltration systems provided site conditions are appropriate

3. Site control measures where prevention and source control measures alone cannot deal with all on-site drainage. Above ground attenuation systems, such as balancing ponds and swales, should be considered in preference to below ground attenuation, due to the water quality, biodiversity and amenity benefits they offer

4. Regional control measures should only be considered where none of the above preferred options can be achieved

- A hierarchical approach should also be applied to the disposal of surface water from the site taking the following order: rainwater harvesting systems, an adequate soakaway or other adequate infiltration system, a watercourse, a surface water sewer and, only as a last resort, a combined sewer

- Exceedance design measures should be applied to ensure that extreme events above the design standards of the system do not pose adverse impacts

- SUDS should be designed for the lifetime of the development, with suitable provisions for likely future permitted and minor development e.g. paving of front gardens or minor extensions (it may be possible to achieve this either through suitable planning or engineered solutions)

7.2.5 **Flood Risk Objective 4: To Protect and Promote Areas for Future Flood Alleviation Schemes**

- Protect Greenfield functional floodplain from future development (our greatest flood risk management asset) and reinstate areas of functional floodplain which have been developed (e.g. reduce building footprints or relocate to lower flood risk zones)

- Develop appropriate flood risk management policies for the Brownfield functional floodplain, focusing on risk reduction

- Identify sites where developer contributions could be used to fund future flood risk management schemes or can reduce risk for surrounding areas

- Seek opportunities to make space for water to accommodate climate change

7.2.6 **Flood Risk Objective 5: To Improve Flood Awareness and Emergency Planning**

- Seek to improve the emergency planning process using the outputs from the SFRA

- Encourage all those within Flood Zone 3a and 3b (residential and commercial occupiers) to sign-up to Floodline Warnings Direct service operated by the Environment Agency, where this service can be provided

- Ensure robust emergency (evacuation) plans are implemented for new developments in areas at risk of flooding

7.3 **Development Control Policies**

7.3.1 For the purposes of development control, detailed policies will need to be set out to ensure that flood risk is taken account of appropriately for both allocated and non-allocated ‘windfall’ sites. In all Flood
Zones, developers and local authorities should realise opportunities to reduce the overall level of flood risk in the area and beyond through the location, layout and design (in that order) of development.

7.3.2 The following reflects the minimum requirements under PPS25 (reference should be made to Tables D1-D3 in PPS25).

Future Development within Flood Zone 1

7.3.3 There is no significant flood risk constraint placed upon future developments within the Low Probability Flood Zone 1 (unless the issues outlined in Section 8.4 are identified), although the vulnerability from other sources of flooding should be considered as well as the effect of the new development on surface water runoff.

7.3.4 Typically, a Drainage Impact Assessment will be required to demonstrate that the treatment and control of surface water runoff can provide a level of betterment, incorporating the use of various SUDS techniques, which should take into account the local geological and groundwater conditions. As a minimum, there should be no increase in the peak discharges/volumes from any existing Greenfield site and at minimum a 20% reduction of peak discharges/volumes from any existing Brownfield site where an existing positive drainage system has been identified.

7.3.5 Consideration must be given to the effect of the new development in terms of off-site consequences from all sources of flooding.

7.3.6 For sites where the access and egress routes are within Flood Zone 3 or 2, the site should be considered as if being within that higher Flood Zone itself.

Future Development within Flood Zone 2

7.3.7 Land use within Medium Probability Flood Zone 2 should be restricted to the ‘water compatible’, ‘less vulnerable’ and ‘more vulnerable’ category, though it will be necessary to undertake the Sequential Test. Should the Exception Test be required a Level 2 SFRA should be carried out.

7.3.8 Where other planning pressures dictate that ‘highly vulnerable’ land uses should proceed, it will be necessary to ensure that the requirements of the Exception Test are satisfied.

7.3.9 The following is required:

- A detailed site-specific FRA should be prepared in accordance with PPS25 and Council Development Control policies
- Floor levels should be situated above the 100 year plus climate change predicted maximum level plus a minimum freeboard of 600mm
- Safe dry pedestrian access to and from the development should be possible above the 1% AEP (1 in 100 year) flood level with an appropriate allowance for climate change and emergency vehicular access should be possible during times of flood
- Flood resistance and resilience should be incorporated into the design
- People (including those with restricted mobility) should be able to remain safe inside the new development up to a 0.1% AEP (1 in 1000 year) event; and rescue and evacuation of people from
Strategic Flood Risk Assessment

Gloucester City Council

A development (including those with restricted mobility) to a place of safety is practicable up to a 0.1% AEP (1 in 1000 year) event

- The treatment and control of surface water runoff should provide a level of betterment, incorporating the use of various SUDS techniques. As a minimum there should be no increase in the peak discharges/volumes from any existing Greenfield site and at minimum a 20% reduction of peak discharges/volumes from any existing Brownfield site where an existing positive drainage system has been identified.

- The proposed development should be set-back from the watercourse with a minimum 8m wide undeveloped buffer zone from top of bank, to allow appropriate access for routine maintenance and emergency clearance.

Future development within High Probability Flood Zone 3a

7.3.10 Land use with High Probability Flood Zone 3a should be restricted to the ‘less vulnerable’ uses to satisfy the requirements of the Sequential Test. For ‘more vulnerable’ uses it is necessary to ensure that the requirements of the Exception Test are satisfied, which will require a Level 2 SFRA..

7.3.11 The following should be considered:

- A detailed site-specific FRA should be prepared in accordance with PPS25 and Council Development Control policies. Properties situated within close proximity to formal defences or water retaining structures (reservoirs/canals) will require a detailed breach and overtopping assessment to ensure that the potential risk to life can be safely managed throughout the lifetime of the development. The nature of any breach failure analysis should be agreed with the Council, the Environment Agency and/or the operating authority, as appropriate.

- The development should not increase flood risk elsewhere, and opportunities should be taken to decrease overall flood risk (such as use of SUDS and de-culverting). This should be optimised by developing land sequentially, with areas at risk of flooding favoured for green space. There should be a positive gain in the floodwater storage capacity provided and there should not be any detrimental impact on floodwater flow conveyance.

- Floor levels should be situated above the 100 year plus climate change predicted maximum level plus a minimum freeboard of 300mm. Within defended the areas the maximum water level should be assessed from a breach analysis. Where there is sufficient depth between the underside of the floor slab and the existing ground level, under-floor voids should be included with adequate void openings.

- The development should allow safe dry pedestrian access to and from the development above the 1% AEP (1 in 100 year) flood level with an appropriate allowance for climate change emergency vehicular access should be possible during times of flood.

- An evacuation plan should be prepared. With respect to new developments, those proposing the development should take advice from the LPAs emergency planning officer and for large-scale developments, the emergency services, when producing an evacuation plan as part of a FRA. All access requirements should be discussed and agreed with the Council and the Environment Agency.
• Basements should not be used for habitable purposes. Where basements are permitted for commercial use, it is necessary to ensure that the basement access points are situated 600 mm above the 1 in 100 year flood level plus climate change.

• The treatment and control of surface water runoff should provide a level of betterment, incorporating the use of various SUDS techniques. As a minimum there should be no increase in the peak discharges/volumes from any existing Greenfield site and at minimum a 20% reduction of peak discharges/volumes from any existing Brownfield site where an existing positive drainage system has been identified. Space should be set aside for SUDS.

• The proposed development should be set-back from the watercourse with a minimum 8m wide undeveloped buffer zone from top of bank, to allow appropriate access for routine maintenance and emergency clearance.

• For sites where the access and egress routes are within Flood Zone 3 or 2, the site should be considered as if being within that higher Flood Zone itself.

Future development within Functional Floodplain Zone 3b

7.3.12 This zone comprises land where water has to flow or be stored in times of flood (land which would flood with an annual probability of 5% (1 in 20 year) or greater in any year or is designed to flood in an extreme (0.1%) flood, including water conveyance routes. Where a modelled outline for Flood Zone 3b has not been produced, its extent is equal to Flood Zone 3a. Therefore for any development site falling in Flood Zone 3a with no 3b available, this section should be used to understand the requirements of development.

• Development in High Probability Flood Zone 3b should be restricted to ‘water-compatible uses’ only.

• PPS25 dictates that ‘essential infrastructure’ can be located in Flood Zone 3b if the Exception test is passed (this would require a Level 2 SFRA). However, appropriate judgement should be exercised when attempting the Exception Test for essential infrastructure in Flood Zone 3b. Essential infrastructure includes: essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk; and strategic utility infrastructure, including electricity generating power stations and grid and primary substations. Essential transport infrastructure may be appropriate if designed in such a way that flood flow routes and flood storage areas are not affected (e.g. designing a bridge to cross the flood risk area). However, utility infrastructure may be less appropriate due to the potential consequences that may occur should the utility site become flooded (as demonstrated by the flooding of Mythe Treatment Works, Castlemeads electricity sub-station and the near-flooding of the Walham electricity sub-station during the summer 2007 flood events).

• ‘Essential infrastructure’ in this zone must be designed and constructed to remain operational in times of flood and not impede water flow.

• Associated buildings, such as boathouses, should be situated outside 3b and should follow the guidance for development in the relevant Flood Zone (as outlined above)
Building extensions proposed in 3b should be discouraged. Where permitted, they should follow the guidelines of 3a (as outlined above). The local authority should request and review an FRA for the extension. The FRA should demonstrate that the extension will minimise the impact on flow conveyance and lost storage.

7.4 Council Specific Policy Issues

7.4.1 The general direction of the Environment Agency is that Gloucester will continue to be defended against flood risk, both now and in the future. The Environment Agency’s policy for Gloucester City Council is to take further action to reduce flood risk, due to the current and future consequences of flooding in urban areas to the north, east and south of Gloucester city centre itself. Apart from the use of defences, there are opportunities for the Council to assist in the reduction of risk by vigorously applying PPS25, promoting the use of SUDS, increasing flow attenuation within channels and seeking opportunities for flood storage by seeking to ensure that Flood Zones 2 and 3 remain undeveloped where possible and reinstating areas of functional floodplain which have been developed (e.g. reduce building footprints or relocate to lower flood risk zones). In addition, the level of flood preparedness (flood warning, flood proofing and flood resilience) should be increased and promoted in this area. An increase in targeted channel maintenance has also been identified as an opportunity in some areas to decrease debris build up in channel and help reduce incidents of blockage and resultant flooding.

7.5 Sensitive Development Locations

7.5.1 Assuming that future site allocations and windfall sites are guided by PPS25 and the recommendations provided in this report, there are few other locations in which development would significantly increase flood risk.

7.5.2 In general, any development (including developments in Low Probability Flood Zone 1) which does not incorporate appropriate SUDS methods may increase the risk of surface and/or fluvial flooding both on-site and off-site (downstream). As such effective development control policies to incorporate SUDS on all new development should be implemented. Site-specific assessments will be required to ensure the appropriate SUDS method is implemented in accordance with geological conditions. The Gloucester tributaries are complex watercourses in that they peak quickly at a similar time to surface water (i.e. a 100 year surface water rainfall event occurs at the same time as a 100 year fluvial event). Substantial problems can occur when floods in excess of the 100 year event occur, beyond the normal standards of protection. This has a particular bearing for the Quedgeley, Innsworth and Longlevens areas. Developers should consider this at an early stage within the design process, referring to CIRIA guidance on design for exceedance.

7.5.3 Areas within the City Council are protected by defences, with resultant residual risk areas. Any development situated behind defences will need careful consideration. The following paragraph comes from the PPS25 Practice Guide Companion:

“When proposing new development behind flood defences, the impact on residual flood risk to other properties should be considered. New development behind flood defences can increase the residual flood risk, should these defences breach or overtop, by disrupting conveyance routes (flow paths) and/or by displacing flood water. If conveyance routes that allow flood water to pass back into a river following failure of a flood defence are blocked this will potentially increase flood risk to existing properties. If there is a finite volume of water able to pass into a defended area following a failure of
the defences, then a new development, by displacing some of the flood water, will increase the risk to existing properties”.

7.5.4 Therefore any development behind defences should be appropriately assessed through a Level 2 SFRA, to ensure no increased risk elsewhere in the event of a defence breach or overtopping.

7.5.5 The natural floodplain of watercourses is an important feature for flood risk management, as well as existing storage areas. Future development sites should be guided away from these areas using the Sequential Test, and in line with recommended policies, should be safeguarded for the future. Any development in these areas would have detrimental effect on flood risk in the immediate vicinity and downstream, by the displacement of flood water.

7.5.6 Finally, it is clear that numerous culverts exist in the study area. Culverts pose a residual risk if river flows are greater than their capacity, if they become blocked, or if they collapse. Any development upstream of culverts should appropriately assess the structural integrity, clearance and maintenance regime and capacity, to ensure all residual risks to the development are minimised. All options for deculverting should be explored.

7.6 **Key Recommendations: Chapter Seven**

- The suggested flood risk management policies outlined in Section 7.2 should be taken into account during the policy making process and, where appropriate, used to strengthen or enhance the development control policies provided in Section 7.3.

- For the purposes of development control, detailed policies will need to be set out to ensure that flood risk is taken account of appropriately for both allocated and non-allocated ‘windfall’ sites. Recommendations are outlined in Section 7.3, which should be followed.

- Sections 7.4 and 7.5 should be referred to when considering council-specific policies and sensitive development locations respectively.
8 Guidance on Application of the Sequential Approach & Sequential Test

This section provides guidance on how to apply the Sequential Approach and Sequential Test. Guidance on how windfall sites should be dealt with is given in Section 7.3

8.1 The Sequential Approach

8.1.1 The Sequential Approach is a simple decision-making tool designed to ensure that areas at little or no risk of flooding are developed in preference to areas at higher risk. PPS25 (paragraphs 14-15) sets out the requirement to apply the Sequential Approach. The aim of the Sequential Approach should be to keep all new development out of medium and high risk areas (Flood Zones 2 and 3) and away from locations affected by other sources of flooding. Opportunities to locate new developments in reasonably available areas of little or no flood risk should be explored, prior to any decision to locate them in areas of higher risk.

8.2 The Sequential Test

8.2.1 The Sequential Test refers to the application of the Sequential Approach, by the Council. The Sequential Test is a key component of the hierarchical approach to avoiding and managing flood risk. The Sequential Test is outlined in PPS25, paragraphs 16-17, as well as Annex D, paragraphs D1-D8 and tables D1-D3.

8.2.2 When allocating land for development, the LPA must demonstrate that it has applied the Sequential Test and has attempted to place all new development in Flood Zone 1 (and away from other sources of flooding). Guidance as to how to apply the Sequential Test is outlined herein.

8.3 Step One: Strategic Overview of flood risk across all potential development areas

8.3.1 The recommended initial step is to determine the extents of potential land allocations on a GIS system. GIS layers of the most up-to-date Flood Zones, main and minor watercourses, canals, flooding from other sources data, defences, culverts and ABDs (located in the CD attached to the front of this report) should then be superimposed on the site layers. Summary tables of flood risk issues should then be prepared for each location, indicating if the potential sites overlap Flood Zones 2, 3, localised flooding areas or if there are records of historic fluvial flood incidents shown in the maps (a template to assist with this process is provided in Appendix F). This can be carried out by a consultant to ensure all issues are fully captured. For the site allocations process, as part of the LDF, it is then recommended that the summary tables and proposed locations are sent to the Environment Agency for verification. Particular care should be taken by identifying allocations that could increase flood risk elsewhere (flood incident points, localised flooding areas, Flood Zones) and lack of dry access.

8.4 Step Two: Flood Risk Issues in Zone 1

8.4.1 The next step should be to analyse all potential sites within Zone 1 by identifying those that:

- Have watercourses without Flood Zone information
- Are affected by flooding from sources other than rivers or have been affected by historic flood events
8.4.2 Each of these points is addressed below.

8.4.3 For any development site containing or located adjacent to a watercourse without Flood Zone information, it is recommended that a minimum 8m development easement from the top of bank is applied, and a site specific FRA is undertaken.

8.4.4 For sites with evidence of flooding from other sources, or have been affected by historic flood events (where the source may be unknown), the Sequential Approach should be used to steer new development away from these areas. An assessment of likely significance of flood risk should be carried out in terms of likely probability of flooding and potential consequences/flood damages (advice from a drainage specialist may be required, such as the SFRA consultant, the Environment Agency, a highways drainage engineer and/or the planning authority drainage specialist). The purpose is to identify sites with significant flood risk, which may need to be facilitated by a Level 2 SFRA. If a site with significant flood risk is identified within Zone 1, this should be considered as if it was in the High Probability Zone 3a, for further application of the Sequential Test in Zone 3a (see Section 8.5), bearing in mind that if a more vulnerable land use is required for the site, it will have to pass the Exception Test. Where these tests are passed, the development must include flood resilience and resistance measures. The potential site owners/residents must also be made aware that they live/work in a localised flood risk area.

8.4.5 Sites without safe dry access routes during flood events are not likely to be able to proceed unless road raising works could be identified that would not impede flood flows or cause a loss in the floodplain storage capacity of the floodplain. This may not always be possible.

8.4.6 For those sites within localised flooding areas or with historic fluvial flood records, development should still be acceptable provided that adequate policies are in place for mitigating the risk. It is recommended that in these instances, the new development is designed to be flood resistant and resilient for its lifetime.

8.4.7 It is important to note that most potential sites that pass the Sequential Test in Zone 1 will still require site-specific FRAs. The vulnerability to flooding from other sources (as well as from river flooding) and the potential to increase flood risk elsewhere through the addition of hard surfaces and the effect of the new development on surface water runoff, with appropriate mitigating action, should be incorporated in an FRA. This need only be brief unless the factors above or other local considerations require particular attention. It is recommended that FRAs are produced for Zone 1 sites of less than one hectare, at locations where there are records of previous flood incidents.

8.5 Step Three: Sequential Test in Zones 2 and 3

8.5.1 The third step is to sequentially allocate sites as part of a SA. It is recommended that prior to incorporating the Sequential Test within the SA, the following actions take place:

a) Apply the measure of avoidance/prevention by moving the boundaries of the potential sites away from Zones 2, 3a and 3b, ensuring flood risk areas remain as open space and river
enhancements are undertaken (such as the removal of culverts) as part of the regeneration process.

b) Provisionally adopt land uses that are fully compatible with the vulnerability classification of PPS25, to try to avoid the need to apply the Exception Test where possible.

8.5.2 Once this has all been carried out, the need to apply the Exception Test might be identified. It is important to note that the Exception Test should only be carried out when it is not possible, or consistent with wider sustainability objectives, for the development to be located in zones of lower probability of flooding. The Exception Test is also only appropriate for use when there are large areas in Flood Zones 2 and 3, where the Sequential Test alone cannot deliver acceptable sites, but where some continuing development is necessary for wider sustainable development reasons (the need to avoid social or economic blight and the need for essential civil infrastructure to remain operational during floods). It may also be appropriate to use it where restrictive national designations such as landscape, heritage and nature conservation designations, e.g. Areas of Outstanding Natural Beauty (AONBs), Sites of Special Scientific Interest (SSSIs) and World Heritage Sites (WHS), prevent the availability of unconstrained sites in lower risk areas.

8.5.3 The need to apply the Exception Test should always prompt the production of a Level 2 SFRA.

8.6 Application of the Sequential Approach to Other Sources of Flooding

8.6.1 Development proposals in any location (Flood Zones 1, 2, 3a and 3b) must take into account the likelihood of flooding from sources other than rivers and the sea (where applicable). The principle of locating development in lower risk areas should therefore be applied to other sources of flooding.

8.6.2 The information collated within the SFRA has identified areas in which risk from other sources of flooding is likely to be an important consideration. The Council should therefore use the Sequential Approach to steer new development away from areas at risk from other sources of flooding, as well as fluvial.

8.6.3 The SFRA has highlighted areas where information of flooding from other sources is currently poorly understood or will require further refinement in the future. Of particular relevance is the fact that the Environment Agency now requires further investigation/mapping of surface water flooding to be carried out as part of a Level 2 SFRA, to ensure that potential allocations can be Sequentially Tested against this source of flooding.

8.7 Dealing with Windfall Sites

8.7.1 Any proposal for development on a ‘windfall’ site will by definition differ to a site allocated in a development plan that has been sequentially tested. Following the completion of the SFRA, the LPA should develop policies in the LDDs on how windfall sites should be treated in flood risk terms (refer to Section 7.3 for suggested policies). LPAs should, through application of the Sequential Test, identify areas where windfall development would be considered as appropriate i.e. defining the type of windfall development which would be acceptable in certain flood risk areas and what the broad criteria should be for submitting a planning application under these circumstances. PPS3 outlines that LPAs should not make allowances for windfall sites for the first ten years of land supply, unless they can demonstrate genuine local circumstances that prevent specific sites being identified. Windfall sites should be subject to the same consideration of flood risk as other housing development.
8.7.2 The Sequential Test should be applied to windfall sites, unless the area and the flood risk vulnerability proposed in which they occur has been sequentially tested on the basis of a SFRA. Where the Sequential Test has not been applied to the area, proposals will need to provide evidence to the LPA that they have adequately considered other reasonably available sites. This will involve considering windfall sites against other sites allocated as suitable for housing in plans.

8.7.3 It should also be noted that paragraphs 4.33-4.39 of the PPS25 Practice Guide (2008) give guidance on applying the Sequential Test to areas requiring redevelopment or regeneration; redevelopment of an existing property and change of use.

8.8 Key Recommendations: Chapter Eight

- The Sequential Test must be carried out on all potential development sites. The aim is to keep all new development out of medium and high risk areas (Flood Zones 2 and 3) and away from locations affected by other sources of flooding.

- GIS layers of all the data depicted on the maps in Volume 2 have been provided with the SFRA. Using a GIS system to superimpose this information on to potential development sites provides an effective means of assessing sites in regard to the Sequential Approach. Using the GIS information, summary tables of flood risk issues should be prepared for each site, indicating if the potential sites overlap Flood Zones 2, 3, localised flooding areas or if there are records of historic fluvial flood incidents shown in the maps (a template to assist with this process in provided in Appendix F). Particular attention should be paid to identifying flood risk issues in Flood Zone 1 (Section 8.4).

- Prior to incorporating the Sequential Test and Exception Test within the Sustainability Appraisal, the following actions must take place:

a) Apply the measure of avoidance/prevention by moving the boundaries of the potential sites away from Zones 2, 3a and 3b, ensuring flood risk areas remain as open space and river enhancements are undertaken (such as the removal of culverts) as part of the regeneration process.

 b) Provisionally adopt land uses that are fully compatible with the vulnerability classification of PPS25, to try to avoid the need to apply the Exception Test where possible.

- Following application of the Sequential Test, if any sites are identified for application of the Exception Test a Level 2 SFRA should be progressed.

- Most potential sites that pass the Sequential Test in Zone 1 will require site-specific FRAs.

- It is recommended that FRAs are produced for Zone 1 sites of less than one hectare, at locations where there are records of previous flood incidents.

- The Sequential Test should be applied to windfall sites, unless the area and the flood risk vulnerability proposed in which they occur has been sequentially tested on the basis of a SFRA.

- Paragraphs 4.33-4.39 of the PPS25 Practice Guide (2008) give guidance on applying the Sequential Test to areas requiring redevelopment or regeneration; redevelopment of an existing property and change of use.
9 Guidance for Developers

9.1.1 Site-specific FRAs will be required for most proposed developments and the level of detail will depend on the level of flood risk at the site (see general details about FRA requirements in Appendix E in PPS25). A FRA should assess flooding from other sources at the site-specific level and offer mitigating options for the management of the risk, without increasing flood risk elsewhere. The onus is on the developer to provide this information in support of a planning application. Prior to undertaking a FRA, developers should ensure that the Sequential Test has been passed at the site to ensure that a site-specific FRA is required and unnecessary time and expenditure is avoided.

9.1.2 Since the release of PPS25 in December 2006, the Environment Agency has power of direction over the determination of planning applications, which can be refused on the grounds of flood risk. Should the Council wish to disregard the advice of the Environment Agency then the planning application could be put before the Secretary of State (as indicated by PPS25 paragraphs 25-29). It is therefore imperative that developers hold discussions over the need for FRAs early on within the planning process. Consultation should be undertaken with the Environment Agency and the relevant Council to ensure that the Council’s policies on flood risk management are respected and taken account of, and that the scope of the FRA is commensurate with the level of flood risk. The following reflects best practice on what should be addressed within a detailed FRA. Those proposing development should also be directed towards Annex F of PPS25 (the figure overleaf shows the recommended process of undertaking an FRA as part of an individual planning application).
9.1.3

Figure 9.1: Guidance for developers for individual planning applications

1. A SFRA can be defined as current if it has been prepared in accordance with PPS25.
2. If the site has been allocated in this way then subsequent steps in the process are likely to be significantly more straightforward.
3. If a site has not been allocated in the LDD because it was considered that the flood risk is unacceptable, it is unlikely that a proposed development at the site will be accepted by the LPA.
4. See pages 30-31 for key consultees to the planning process with regard to flood risk.
5. Guidance on undertaking a FRA can be found in Chapter 2.
6. Including surface water management.
9.2 Proposed Development within Flood Zone 1

9.2.1 The risk of other sources of flooding (surface water drainage, sewers, impounded water bodies, groundwater) must be considered, and SUDS techniques must be employed to ensure no worsening of existing flooding problems elsewhere within the area.

9.2.2 The SFRA provides specific recommendations with respect to the provision of sustainable flood risk mitigation opportunities that will address both the risk to life and the residual risk of flooding to development within particular ‘zones’ of the area. These recommendations should form the basis for the site-based FRA.

9.3 Proposed Development within Medium Probability Zone 2

9.3.1 For all sites within Medium Probability Zone 2, a scoping level FRA should be prepared based upon readily available existing flooding information, sourced from the Environment Agency. If there is a significant flood risk from other sources (surface water drainage, sewers, impounded water bodies, groundwater) identified then a more detailed FRA should be prepared. It will be necessary to demonstrate that the residual risk of flooding to the property is effectively managed throughout, for example, the provision of raised floor levels and the provision of planned evacuation routes or safe havens.

9.4 Proposed Developments within High Probability Flood Zone 3a

9.4.1 All FRAs supporting proposed development within High Probability Zone 3a should assess the proposed development against all elements of the Council’s flood policy, and include an assessment of the following:

- The risk of flooding to and from the development from other sources (e.g. surface water, sewers, impounded water bodies, groundwater) as well as from river flooding. This will involve discussion with the Council, Environment Agency and/or operating authority to confirm whether a localised risk of flooding exists at the proposed site. Localised flooding may also occur, typically associated with local catchment runoff following intense rainfall passing directly over the area. This localised risk of flooding must also be considered as an integral part of the detailed FRA.

- The risk of flooding to and from the development over its lifetime (including the potential impacts of climate change as well as changes that may occur, such as permitted development), i.e. maximum water levels and depths, flow paths and flood extents within the property and surrounding area. The Environment Agency may have carried out detailed flood risk mapping within localised areas that could be used to underpin this assessment. Where available, this will be provided at a cost to the developer. Where detailed modelling is not available, hydraulic modelling by suitably qualified engineers will be required to determine the risk of flooding to the site.

- The potential of the development to increase flood risk elsewhere through the addition of impermeable surfaces, the effect of the new development on surface water runoff, and the effect of the new development on depth and speed of flooding to adjacent and surrounding property. This will require a detailed assessment to be carried out by a suitably qualified engineer.

- A demonstration that residual risks of flooding (after existing and proposed flood management and mitigation measures are taken into account) are acceptable. Measures may include flood
defences, flood resistant and resilient design, escape/evacuation, effective flood warning and emergency planning.

- Details of existing site levels, proposed site levels and proposed ground floor levels should be provided on maps. A topographic survey and flood extents must be shown on maps to show the full extent of the 1% AEP (1 in 100 year) flood with and without an appropriate allowance for climate change and, where relevant, the extent of the functional floodplain. In addition, where safe access and egress is required, it must be demonstrated on the maps that it can be provided from the property to an area wholly outside of the floodplain.

- Demonstration that a positive gain in floodplain storage capacity is provided. This should be provided through ‘level for level’ floodplain compensation. Further guidance can be found in the CIRIA document C624 Development and Flood Risk (the use of under-floor voids will not normally, by itself be considered as mitigation).

- Demonstration that the layout and design of the development will not have a detrimental impact upon floodwater flow conveyance.

- Demonstration that opportunities to reduce flood risk and enhance river corridors have been maximised, for example, through the removal of unnecessary obstructions such as culverts or low bridges (subject to these works not causing in themselves an unacceptable increase in flood risk).

- Demonstration that the development is consistent with the relevant CFMP and its policy units

9.4.2 It is essential that developers thoroughly review the existing and future structural integrity of informal defences, if present, upon which the development will rely (i.e. over the lifetime of the development), and ensure that emergency planning measures are in place to minimise risk to life in the unlikely event of a defence failure. This would be particularly important for development that could potentially be affected as a result of a breach of any canals in the study area.

9.5 Proposed Developments within Functional Floodplain Flood Zone 3b

9.5.1 In line with PPS25, after having applied the Sequential Test, development will not normally be allowed in the Functional Floodplain unless it is classified as a ‘water compatible’ or ‘essential infrastructure’ use. Table D2 from PPS 25 details the type of developments classified as ‘water compatible’ or ‘essential Infrastructure.’ Refer to Section 7.3 for further guidance on compatible uses.

9.6 SUDS Requirements

9.6.1 Annex F of PPS25 outlines a range of SUDS options which could be applied to new development sites. Although not all will be appropriate for individual development sites, a suitable drainage approach should be possible on almost every site. All new development sites will require the following:

- To obtain the most benefit, SUDS must be considered as early as possible in the planning process

- The drainage system to be designed to accommodate all storm events up to and including the 1% AEP (1 in 100 year) event, with an appropriate allowance for climate change

- Application of a SUDS management train
As outlined in section 10.4, which outlines appropriate SUDS techniques for Gloucester, a hierarchical approach should be applied to the SUDS used, in order of priority:

1. Preventative measures should be the preferred option i.e. ensuring there are not unnecessary impermeable areas on-site

2. Source control measures such as rainwater harvesting and infiltration systems should be the next preferred option, provided the site conditions are appropriate

3. Site control measures should be the next preferred option, where prevention and source control measures alone cannot deal with all on-site drainage. Above ground site control attenuation systems, such as balancing ponds and swales, should be considered in preference to below ground attenuation, due to the water quality, biodiversity and amenity benefits they offer

4. Regional control measures should only be considered where none of the above preferred options can be achieved

A hierarchical approach should be applied to the disposal of surface water from the site referencing in order of priority:

1. Rainwater harvesting systems

2. An adequate soakaway or other adequate infiltration system

3. A watercourse

4. A surface water sewer

5. A combined sewer, only as a last resort

Where prevention, source control/infiltration cannot deal with all on-site site drainage, as a minimum there should be no increase in the peak discharges/volumes from any existing Greenfield site and at minimum a 20% reduction of peak discharges/volumes from any existing Brownfield site where an existing positive drainage system has been identified

Exceedance design measures to be applied to ensure that extreme events above the design standards of the system do not pose adverse impacts

A sequential approach should be applied to the site layout to specifically set aside space for SUDS

They should be designed for the lifetime of the development, with suitable provisions for likely future permitted and minor development e.g. paving of front gardens or minor extensions (it may be possible to achieve this either through suitable planning or engineered solutions).

9.7 Raised Floor Levels and Basements (Freeboard)

9.7.1 The raising of floor levels above the 1% AEP (1 in 100 year) peak flood level will ensure that the damage to property is minimised. Given the anticipated increase in flood levels due to climate change, the adopted floor level should be raised above the 1% AEP (1 in 100 year) flood level with an appropriate allowance for the potential impacts of climate change (refer to Section 5.5).
9.7.2 It is highlighted that many of those areas currently situated within Medium Probability Zone 2 could become part of the High Probability Zone 3. This is important as it means that properties that are today at relatively low risk will, in 20 to 100 years, be within High Probability Zone 3a. It is imperative therefore that planning and development control decisions take due consideration of the potential risk of flooding in future years.

9.7.3 Wherever possible, floor levels should be situated a minimum of 600 mm above the 1% AEP (1 in 100 year) flood level with an appropriate allowance for the potential impacts of climate change, determined as an outcome of the site-based FRA. Additional freeboard may be required because of the risk of blockages to the channel, culverts or bridges. The height that the floor level is raised above the flood level is referred to as the ‘freeboard’, and is determined as a measure of residual risks. Where the depth between the underside of the floor slab and the existing ground level will allow, under-floor voids should be included with openings. In these instances the voids and openings should reach between the existing ground level and the 1% AEP (1 in 100 year) flood level with an appropriate allowance for the potential impacts of climate change.

9.7.4 The use of basements within flood risk areas should be discouraged. Where basements are permitted however, it is necessary to ensure that the basement access points are situated a minimum of 600 mm above the 100 year flood level plus climate change. The basement must have unimpeded access and waterproof construction to avoid seepage during flooding conditions. Habitable uses of basements within Flood Zone 3 should not be permitted, while basement dwellings can be allowed in Flood Zone 2 provided they pass the Sequential and Exception Tests.

9.8 Development Behind Defences

9.8.1 Prior to the development of areas behind defences, the Sequential and Exception Tests must be undertaken in the first instance. Where the need to apply the Exception Test is identified, this should be supported by a Level 2 SFRA.

9.8.2 Areas behind defences are at particular risk due to breach or overtopping, resulting in the rapid on-set of fast-flowing, deep water flooding with little or no warning. Risks will therefore be highest closest to these defences and as such it is recommended that the LPAs should set back developments and ensure that those proposing developments develop robust evacuation plans as part of their FRA in consultation with the Environment Agency.

9.8.3 Consideration of flood risk behind defences should be made as part of detailed FRAs. Developers should review Volume 2, Tiles A1-A21 to determine the location of structures and defences in proximity to the site and therefore identify the possibility of localised residual flood risk. The FRA should take into account:

- The potential mechanisms of failure of flood defence infrastructure
- The standard of protection and design freeboard
- The asset condition of the flood defence
- The height of the flood defence infrastructure and retained water levels compared to ground levels
- The potential location, width and invert level of breach(es) in the flood defences
The duration of water levels during a flood event or tidal cycle
The period it would take the operating authority to close the breach
The period it would take for water to drain from the flooded area following a breach or overtopping event
The residual risk from failure through demountable defences or pumps not being in position/operation when they are used

In addition to this it is recommended that should any development be proposed in a defended flood area, the potential cumulative impact of loss of storage on flood risk elsewhere should be considered.

Car Parks

Car parking may be appropriate in areas subject to shallow, low velocity flooding where there is not a risk of the vehicles being washed away or the surrounding transport network becoming unsafe to drive through (e.g. in High Probability Zone 3a), provided sufficient flood warning is available, and appropriately located and worded signs are in place. However, this would still need to consider the sequential approach and be discussed and agreed with the LPA and/or the Environment Agency. As part of an FRA, the developer should consider the likelihood of people being able to move their cars within the flood warning time.

Developer Contributions

If new developments are placed on Flood Zones 2 or 3, it might be necessary for local infrastructure to be increased. With regards to flood risk, it might also be necessary to extend flood warning system coverage where appropriate, or increase the maintenance of flood defences. The LPA and other authorities might wish to request developer contributions to cover the cost of this, and if so this should be achieved through a Section 106 Legal Agreement. The LPA and the Environment Agency may wish to work in conjunction with each other to formulate a consistent process for obtaining developer contribution.
9.10 Key Recommendations: Chapter Nine

- FRAs will be required for most proposed developments (general details about FRA requirements are in Appendix E of PPS25).
- The onus is on the developer to provide an FRA in support of a planning application.
- Prior to undertaking a FRA, developers should ensure that the Sequential Test has been passed at the site.
- Developers should consult with the Environment Agency and the Council to ensure that the Council’s policies on flood risk management are respected and taken account of, and that the scope of the FRA is commensurate with the level of flood risk.
- Section 9.2-9.5 of the SFRA reflects best practice on what should be addressed within a detailed FRA.
- A suitable drainage approach should be possible on almost every site. All new development sites must follow the guidance outlined in Section 9.6. The FRA must demonstrate that these requirements have been achieved.
- Floor levels for developments in flood risk areas must be situated a minimum of 600mm above the 1% AEP (1 in 100 year) plus climate change flood level, determined as an outcome of the site-based FRA.
- The use of basements within flood risk areas should be discouraged. Where basements are permitted however, it is necessary to ensure that the basement access points are situated a minimum of 600 mm above the 100 year plus climate change flood level.
10 Guidance for the Application of Sustainable Drainage Systems

10.1 Introduction

10.1.1 PPS1: Delivering sustainable development; PPS23: Planning and Pollution Control; and PPS25 requires that LPAs should promote SUDS. LPAs should therefore ensure policies encourage sustainable drainage practices in their LDDs. SUDS is a term used to describe the various approaches that can be used to manage surface water drainage in a way that mimics the natural environment. The management of rainfall (surface water) is considered an essential element of reducing future flood risk to both the site and its surroundings. Indeed, reducing the rate of discharge from urban sites to Greenfield runoff rates is one of the most effective ways of reducing and managing flood risk within the area.

10.1.2 SUDS systems need to be considered at an early stage, prior to defining the layout of a proposed site, in accordance with the Sequential Approach. This is likely to lead to a reduction in the overall cost of draining the site as it is much more difficult and expensive to retrofit SUDS to a site that has a development layout already designed. For major development schemes proposed where there are likely to be many competing issues, SUDS should ideally be discussed pre-application to maximise the on-site opportunities. This in return should result in a reduced cost to the developer for the system.

10.2 Effective application of SUDS techniques

10.2.1 A hierarchical approach is recommended for selection of SUDS techniques to dispose of surface runoff. The SUDS Manual (CIRIA 697) states that wherever possible, stormwater should be managed in small, cost-effective landscape features located within small sub-catchments rather than being conveyed to and managed in large systems at the bottom of drainage areas. This is illustrated by the SUDS Management Train (see Figure 10.1).

10.2.2 The first stage, ‘prevention’ stresses the benefit of avoiding runoff in the first place, and also refers to the need to prevent pollution. Prevention of runoff can be achieved by maintaining a permeable area. This can be achieved by avoiding paving a surface, instead using permeable materials which allow rainfall to soak directly into the ground. It may also be possible to allow roof water to discharge straight onto a lawn in order to soak into the ground, but infiltration must avoid pollution of the soil and groundwater. This includes ensuring minimal use of herbicides on lawns, secure storage of oils and chemicals to avoid leakage and dog litter policies.
10.2.3 If prevention methods are not sufficient to avoid runoff, the next preferred option is to store and dispose of it on site. This includes measures such as permeable paving or rainwater harvesting, which has the added benefit of reducing demand on public water supply, and reduces costs for the user of the rainwater (if they purchase water using a water meter). Where water cannot be directly infiltrated into the ground, it may be conveyed some distance before infiltration or, alternatively, discharged into a watercourse. As the runoff is conveyed further, it moves from source control to site control and then regional control.

10.2.4 Infiltration is preferred over disposal to a watercourse or the public sewer system as this more commonly deals with runoff nearer to source and serves to replenish groundwater. This recommendation is reinforced by the requirements of the Building Regulations Part H3. If infiltration is not viable (due to a high water table, local impermeable soils, contamination issues including source protection zones etc.), then the next option of preference is for the runoff to be discharged into a nearby watercourse. Only if neither of these options is possible should the water be discharged into the public sewer system.

10.3 Types of SUDS Systems

10.3.1 SUDS may improve the sustainable management of water for a site by:

- Reducing peak flows to watercourses or sewers and potentially reducing the risk of flooding downstream
- Reducing volumes of water flowing directly to watercourses or sewers from developed sites
- Improving water quality compared with conventional surface water sewers by removing pollutants from diffuse pollutant sources
- Reducing potable water demand through rainwater harvesting
- Improving amenity through the provision of public open space and wildlife habitat
- Replicating natural drainage patterns, including the recharge of groundwater so that base flows are maintained

10.3.2 Any reduction in the amount of water that originates from any given site is likely to be small however if applied across the catchment, the cumulative effect from a number sites could be significant.

10.3.3 There are numerous different ways that SUDS can be incorporated into a development. The appropriate application of a SUDS scheme to a specific development is heavily dependent upon the topography and geology of the site and the surrounding areas. Careful consideration of the site characteristics is necessary to ensure the future sustainability of the adopted drainage system. When designing surface water drainage systems, PPS25 states that climate change should be taken into account appropriate to the predicted lifetime of the development, and designed to account for the predicted increases in rainfall intensity, as outlined in Table 5.2.

10.3.4 The most commonly found components of a SUDS system are described below:

- Pervious surfaces: Surfaces that allow inflow of rainwater into the underlying construction or soil.
Strategic Flood Risk Assessment

Gloucester City Council

- Green roofs: Vegetated roofs that reduce the volume and rate of runoff and remove pollution. They comprise a multi-layered system that covers the roof of a building or podium structure with vegetation cover/landscaping/permeable car parking, over a drainage layer. They are designed to intercept and retain precipitation, reduce the volume of runoff and attenuate peak flow.

- Filter drains: Linear drains consisting of trenches filled with a permeable material, often with a perforated pipe in the base of the trench to assist drainage, to store and conduct water; they may also permit infiltration.

- Filter strips: Vegetated areas of gently sloping ground designed to drain water evenly off impermeable areas and to filter out silt and other particulates.

- Swales: Shallow vegetated channels that conduct and retain water, and may also permit infiltration; the vegetation filters particulate matter.

- Basins: Ponds and wetlands areas that may be utilised for surface runoff storage.

- Infiltration Devices: Sub-surface structures to promote the infiltration of surface water to ground. They can be trenches, basins or soakaways.

- Bioretention areas: Vegetated areas designed to collect and treat water before discharge via a piped system or infiltration to the ground.

- Pipes and accessories: A series of conduits and their accessories normally laid underground, that convey surface water to a suitable location for treatment and/or disposal (although sustainable, these techniques should be considered where other SUDS techniques are not practicable).

10.3.5 The treatment and control of surface water runoff should provide a level of betterment, incorporating the use of various SUDS techniques. As a minimum there should be no increase in the peak discharges/volumes from any existing Greenfield site and at minimum a 20% reduction of peak discharges/volumes from any existing Brownfield site where an existing positive drainage system has been identified.

10.3.6 For more guidance on SUDS, the following documents and websites are recommended as a starting point:

- CIRIA c644 – Green Roofs (2007) provides guidance on the design, construction and operation of Green Roofs. The guidance also describes how ‘quick wins’ for biodiversity can be achieved in
the built environment by incorporating nesting and roosting boxes for birds, bats and other animals.

- C625 Model agreements for sustainable drainage systems (Shaffer et al, 2004 – available from CIRIA bookshop www.ciria.org)

- C582 Source control using constructed pervious surface: hydraulic, structural and water quality performance issues (Pratt et al, 2002 – available from CIRIA bookshop www.ciria.org)

- C635 Designing for exceedance in urban drainage – good practice – free download from CIRIA bookshop www.ciria.org

- www.ciria.org.uk/suds

10.4 Application of SUDS for Gloucester City Council

10.4.1 Gloucester has a mixture of floodplain soils with naturally high groundwater, slowly permeable soils and freely permeable soils, which are predominantly slightly acidic or lime-rich loams and clays. The more permeable sites should have priority given to infiltration drainage techniques, as opposed to discharging surface water to watercourses. Where less permeability is found and infiltration techniques that rely on discharge into the existing soils are not viable (also due to a high water table, source protection zones, contamination etc.), discharging site runoff to watercourses is preferable to the use of sewers. Integrated urban drainage should also be used throughout the design process.

10.4.2 The city has not been highlighted by DEFRA as a Nitrate Vulnerable Zone (NVZ) and there are no areas classified as a Groundwater Source Protection Zone (GSPZ) by the Environment Agency. Any boreholes, water wells or other extraction points should be identified and taken into account in the design process.

10.4.3 NVZs are generally indicative of the agricultural nature of the surrounding land and the use of fertilisers. Nitrate levels in many English waters are increasing principally due to surface water runoff from agricultural land entering receiving water bodies. The level of nitrate contamination will have an impact on the choice of SUDS and will have to be assessed for specific sites.
10.4.4 Runoff which is likely to be heavily contaminated must be treated by a proprietary device, which should be carefully considered to ensure the correct system is selected to remove pollutants. PPS3 (2006) states that source control SUDS must be considered and incorporated where suitable. For example, surface water drained from a car park should implement a filter bed wherever possible before considering an interceptor device to remove contaminants.

10.4.5 If the local soil is contaminated then a lined system is generally required. This may include a drainage design which allows infiltration in the upper layer, but should incorporate an impermeable layer at its base to prevent contamination. In such cases lined underground attenuation storage is used to store a 1% AEP (1 in 100 year) +20% (for climate change) storm event and discharges into a nearby watercourse.

10.4.6 Regardless of the underlying geology identified in the SFRA, where there are no reasons why infiltration is not possible (e.g. contaminated land), soakage tests must be undertaken on site in accordance with either CIRIA Report 156 or BRE365. The SFRA will only provide an early indicator to enable decisions as to the best way forward to be formulated for the design site.

10.5 Adoption and Maintenance of SUDS

10.5.1 PPS25 states that when planning SUDS, it is important that developers carefully consider maintenance to ensure that SUDS continue to function over time. Poorly maintained SUDS could lead to an increase in flood risk rather than a reduction.

10.5.2 The future ownership and management of all elements of the SUDS system will need to be addressed at an early stage as the maintenance responsibility must be given to durable and accountable bodies which have the resources to meet the long term needs of the system.

10.5.3 Ensuring developers make a full contribution to the costs of both building and maintaining such systems is vital to their long term effectiveness. The costs of maintaining SUDS devices will be dependant on the types of system used and this should be considered by the developer at an early stage.

10.5.4 Traditional drainage systems are criticised that problems are often hidden underground and take time to eventually be discovered. The majority of SUDS devices are at the surface and pollution or silt build up can be observed as it happens. This means that any issues can be dealt with as they occur, but requires a regular monitoring regime and suitable body to provide the maintenance support.

10.5.5 As the majority of SUDS are at the surface elements, they are best incorporated into local landscape maintenance regimes where possible. An advantage of this is that the site managers and landscape contractors will have a good knowledge of the site through regular maintenance operations such as grass cutting and litter removal. This should also ensure regular monitoring and a quick response to any maintenance needs.

10.5.6 Water companies such as Severn Trent Water Ltd are currently only willing to adopt hard structures and not softer SUDS systems, such as swales or ponds, which provide a break between pipe networks. Until this process changes there will be issues with adoption and developers will have to consult with local authorities to establish the best long term maintenance plan.

10.5.7 SUDS in new developments are usually constructed by the developer and offered for adoption to the responsible organisation. There are currently four main options for determining who might take
Responsibility for adoption and maintenance of SUDS for a site: Local Planning Authorities, Sewerage Undertakers, Highway Authority or Specialist SUDS undertakers or companies.

10.5.8 Existing legislation (e.g. Section 38 of the Highways Act, 1980 and Section 106 of the Town and Country Planning Act, 1990) can provide a mechanism for SUDS adoption. PPS25 recommends that early consultation with the relevant stakeholders is made to establish and agree responsibilities for long-term maintenance. In addition, the National SUDS Working Group (NSWG) has developed an Interim Code of Practice for SUDS (NSWG, 2004) which provides a set of planning model agreements for use between those public organisations with statutory or regulatory responsibilities relating to SUDS. The model agreements are based on current legislation and the current planning system. This code of practice is complemented by CIRIA publication C625 Model agreements for SUDS.

10.6 Key Recommendations: Chapter Ten

- The Council should endeavour to ensure that SUDS are applied for all new developments, and retro-fitted wherever possible.

- The treatment and control of surface water runoff should provide a level of betterment, incorporating the use of various SUDS techniques. As a minimum there should be no increase in the peak discharges/volumes from any existing Greenfield site and at minimum a 20% reduction of peak discharges/volumes from any existing Brownfield site where an existing positive drainage system has been identified.

- SUDS systems need to be considered at and early stage, prior to defining the layout of a proposed site, in accordance with the Sequential Approach. For major development proposals where there are likely to be many competing issues, SUDS should be discussed pre-application to maximise the on-site opportunities.

- The SUDS management train should be followed (Section 10.2).

- The future ownership and management of all elements of the SUDS system will need to be addressed at an early stage as the maintenance responsibility must be given to durable and accountable bodies which have the resources to meet the long term needs of the system. Ensuring developers make a full contribution to the costs of both building and maintaining such systems is vital to their long term effectiveness.
11 Summary and Recommendations

11.1.1 This section summarises the findings of the SFRA, recommendations and further work. Key recommendations are summarised at the end of each chapter and should also be reviewed by the reader.

11.2 Summary: Flood Risk Issues

11.2.1 Based on the findings of the SFRA, flood risk issues within the study area can be summarised as follows:

- Gloucester City Council is drained entirely by the River Severn which has both tidal and fluvial influences in the area.

- Flood Zone maps for the River Severn extend for large distances into the Council area incorporating a number of properties. The flood risk is to Gloucester is predominantly fluvial as the River Severn channel becomes narrower, providing a restriction to high tides moving upstream and river flows moving downstream. However, flooding can be a result of a combination of both tidal and fluvial influences.

- The majority of flood risk in the area appears to arise from the smaller catchments. While the Severn is capable of coming out of bank and flooding a large area, flood risk is reduced by the presence of defences. Nevertheless, the Severn may contribute to flooding as the effects of high flows in the smaller streams may be worsened by the elevated levels in the Severn, making it difficult for them to discharge. The main areas at risk appear to be on the Sud Brook around the Tredworth and Linden areas and on the Whaddon Brook around the Podsmead area.

- In general the level of flood risk from artificial drainage systems within the area is medium to high.

- Surface water flooding in Gloucester tends to be associated with poor urban drainage and backing up within urban drainage systems under high river flows. The geology and topography of the study area also contribute to the rainfall response within Gloucester and therefore the likelihood and nature of surface water flooding. In addition, areas with an abundance of impervious surfaces means these areas are also at risk of surface water flooding, especially when local intense rainstorms occur.

- One canal is located in the area, however, there are no recorded incidents of breaches or overtopping, or any other local flood risk instances associated with this canal. Sections of raised canal have been identified in the Council area and residual risk areas (from breach/overtopping) have been mapped.

- Consultation with the Environment Agency has indicated that there are no records of reservoir breaching/overtopping within the Gloucester City Council area.

- There are a number of locations at risk of flooding that are currently protected by permanent defences within the Council area. Most of the Lower Severn catchment is now protected by some form of defence, whether it is a floodwall, earth embankment, infrastructure acting as a defence or high ground. Many locations are also protected by natural high ground and structures which act as a line of defence but are not under the Agency’s responsibility to operate or maintain (e.g. the
railway line). Any failure of these structures could potentially cause or exacerbate flooding problems.

- Council maintained defences and flood alleviation schemes are located within the Council area including a flood relief channel and control structure along Daniel’s Brook, constructed to provide protection to properties located along the north bank. No flooding had been recorded on Daniels Brook since the relief channel and control structure were completed, however, during the summer 2007 floods a significant number of properties at this location experienced flooding from both the brook itself and the flood relief channel.

- A number of flood storage areas are situated along the River Severn. These are areas of natural, low lying topography bounded by high ground, with earth embankments along the edge of the river. Key storage cells located within the Gloucester City Council area include: Hempstead (SO 8144 1791) and Weir Green (SO 7959 1470).

- Saintbridge balancing pond is located along the River Twyver. At Abbeydale the main river is split by a man-made structure designed to carry excess flow down a diversion channel and on into the Saintbridge balancing pond located between the Flood Relief Channel and the main Twyver river channel.

11.3 Summary: Flood Zone Data Issues

11.3.1 During the review of the Flood Zone information, some inaccuracies were identified. In some cases the Flood Zone information in the study area has been derived from the modelling package JFLOW, which is a national broadscale model and as such has known limitations. The Flood Zones can be misaligned from the channel, show flood risk when a culvert is present, or follow a path which does not have a watercourse. When viewing the Flood Zone data with OS Tiles these inaccuracies are clear, and appropriate judgement should be exercised when applying the Sequential Test. It may be prudent for a suitably qualified flood risk management specialist to review and assess preliminary site allocations to advise on local Flood Zone issues.

11.4 Summary: Climate Change Issues

11.4.1 Upland areas will be subject to deeper, faster flowing water as climate change affects flood risk, while in lowland areas the extent of flooding is likely to become greater. Given the lowland setting of Gloucester, an increase in flood extent is expected, but flood waters might also be deeper. This means that the flood hazard is likely to increase over time, creating increased risk to humans, more damage to property and higher economic damages. A Level 2 SFRA, which assesses flood hazard, will therefore be required for site allocations which need to satisfy the Exception Test. Certainly, sites that are currently within Flood Zones 2 and 3 will be subject to more frequent and potentially deeper flooding. Additionally, the tidal section of the Severn might be subject to increased storm surges and wave height in the future.

11.4.2 The Severn Tidal Tributaries CFMP states that the most significant changes in flood depth and extent can be seen in the catchments of the Sud Brook and River Twyver, including the industrial area around the Gloucester Docks, through St Paul’s, High Orchard, Barton and Tredworth, and south of Coney Hill. There are a few considerable changes in the Wotton Brook catchment, where properties west of the A38 Tewkesbury road and those on the border between Elmbridge and Wotton are expected to flood in the future. There is also an area of agricultural land downstream of the A40 at risk. Slight increases in depth and extent of flooding in areas already at risk of flooding from the
Daniels and Dimore Brooks are predicted, but not on the same scale as other areas of the Gloucester Streams. Damages during the one per cent annual probability flood event increase by 17% to £110 million under the 100 year horizon future scenarios. The scale of damage, therefore, remains high.

11.4.3 The LPA should consider using the climate change maps to carry out the Sequential Test, in order to give a particularly long-term risk-based approach to planning. It should be noted that the climate change maps do not show a climate change scenario for Flood Zone 2. For the purpose of spatial planning it is recommended that a buffer of 10m (measured from the edge of the existing Flood Zone 2) is added to represent future climate change. A Level 2 SFRA should assess climate change impacts in detail.

11.5 Recommendations: Site Allocation Process

11.5.1 It is recommended that the outputs from this study are used as an evidence base from which to direct new development to areas of low flood risk (Flood Zone 1). Where development cannot be located in Flood Zone 1, the Council should use the flood maps to apply the Sequential Test to their remaining land use allocations. The following should be considered:

- Flood Zone 3b has been mapped where it exists. Where it does not exist, Flood Zone 3a has been used to represent Flood Zone 3b.

- The Council should take note of Section 4.8 which outlines areas where the existing Flood Zones outlines are deemed to be of poor resolution. Where emerging site allocations are located in these areas, the Sequential Test process should be verified by a technical expert.

- Following application of the Sequential Test, a detailed interrogation of emerging allocations should be carried out, using the template in Appendix F. This will ensure that that all potential flood risk issues to the site are identified, such as incorrect Flood Zones, residual risk areas and so on. The review should identify resultant required works if necessary (Level 2 SFRA, FRA etc.)

11.5.2 The Sequential Approach should also be applied within development sites to inform site layout, by locating the most vulnerable elements of a development in the lowest risk areas (in accordance with Table D3 of PPS25). The use of Flood Zones 2 and 3 for recreation, amenity and environmental purposes can provide an effective means of flood risk management as well as providing connected green spaces with consequent social and environmental benefits.

11.5.3 The Environment Agency will require a Level 2 SFRA to be carried out in order to provide a detailed assessment of the risk of flooding from non-fluvial sources, in areas where new development is proposed.

11.5.4 With regard to fluvial sources of flood risk, a Level 2 SFRA will be required where the need to apply the Exception Test is identified (as outlined in Table D3 of PPS25). This cannot be determined until the Sequential Test has been carried out on all proposed development sites. It is recommended that as soon the need for the Exception Test is established, the Level 2 SFRA is undertaken by a suitably qualified expert so as to provide timely input to the overall LDF process. The following should be noted:

- Breach and overtopping assessments will be required for development situated behind defences and immediately adjacent to raised canals
The effects of structures in the vicinity of development sites (culverts etc.) might need to be assessed to determine the capacity and identify residual risk areas that might result from blockage. This will inform the appropriate placement of development and ensure appropriate mitigation is put in place. This could also address any mitigation works that might be deemed appropriate.

11.6 Recommendations: Council Policy

11.6.1 It is recommended that for the purpose of clarity, a Supplementary Planning Document should be developed in light of the suggested policies and guidance notes, outlining the minimum requirement of the Environment Agency in response to PPS25.

11.6.2 The Severn CFMP is currently not available. It is therefore recommended that once it is produced by the Environment Agency (the draft is expected at the end of May 2008) the Council reviews the CFMP to ascertain the policy relevant to Gloucester. Overall, the Environment Agency’s direction on flood risk management in Gloucester will not vary significantly from the policy direction outlined in the Severn Tidal Tributaries CFMP (as summarised in Section 11.5 below). It is further recommended that the Council seeks to work with the Environment Agency to deliver the selected policy for flood risk management at the local level.

11.6.3 It is also recommended that the following core considerations should be included within the Council’s flood risk management policy documents:

- Use the Sequential Test to locate new development in least risky areas, giving highest priority to Flood Zone 1
- Use the Sequential Approach within development sites to inform site layout by locating the most vulnerable elements of a development in the lowest risk areas, in accordance with Table D3 of PPS25
- Protect the functional floodplain from development, promote the use of green corridors in flood risk areas and restore the natural course of rivers. These will all act as a means of risk reduction
- Seek to reinstate functional floodplain wherever possible (e.g. reduce building footprints or relocate to lower flood risk zones)
- Ensure all new development is ‘safe’, meaning that dry pedestrian access to and from the development is possible without passing through the 1% AEP (1 in 100 year) plus climate change floodplain, emergency vehicular access is possible, and flood resistance and resilience is incorporated
- No new building should be allowed in a flood risk area that is not flood resilient
- The treatment and control of surface water runoff should provide a level of betterment, incorporating the use of various SUDS techniques. As a minimum there should be no increase in the peak discharges/volumes from any existing Greenfield site and at minimum a 20% reduction of peak discharges/volumes from any existing Brownfield site where an existing positive drainage system has been identified
Further culverting and building over of culverts should be avoided. All new developments with culverts running through their site should seek to de-culvert rivers for flood risk management and conservation benefit.

Seek developer contributions (to be determined in consultation with the Environment Agency) via S106 planning obligations to fund (or part fund) strategic flood risk management facilities (such as storage areas) and bring benefit to the wider community.

11.7 Recommendations: Environment Agency Policy Relevant to the Council

11.7.1 The general direction of the Environment Agency is that Gloucester will continue to be defended against flood risk, both now and in the future. The Environment Agency’s policy for Gloucester City Council is to take further action to reduce flood risk, due to the current and future consequences of flooding in urban areas to the north, east and south of Gloucester city centre itself. Apart from the use of defences, there are opportunities for the Council to assist in the reduction of risk by vigorously applying PPS25, promoting the use of SUDS, and increasing flow attenuation within channels and seeking opportunities for flood storage by seeking to ensure that Flood Zones 2 and 3 remain undeveloped where possible and reinstating areas of functional floodplain which have been developed (e.g. reduce building footprints or relocate to lower flood risk zones). In addition, the level of flood preparedness (flood warning, flood proofing and flood resilience) should be increased and promoted in this area. An increase in targeted channel maintenance has also been identified as an opportunity in some areas to decrease debris build up in channel and help reduce incidents of blockage and resultant flooding.

11.8 Recommendations: Emergency Planning

11.8.1 It is recommended that the Council’s Emergency Response Plan is reviewed and updated in light of the findings of the SFRA to ensure that safe evacuation and access for emergency services is possible during times of flood both for existing developments and those being promoted as possible sites within the LDF process. It is further recommended that the Council works with the Environment Agency to promote the awareness of flood risk, especially to those living in flood risk areas, and encourage communities at risk to sign-up to the Environment Agency Flood Warning Direct service. In line with the Pitt Review, this should be achieved through ‘door knocking’ by local authorities.

11.8.2 In line with the Pitt Review it is recommended that a review of designated rest centres and other major facilities should be carried out to ensure that they have the necessary levels of resilience to enable them to be used in the response to flooding and other major emergencies, or that alternative arrangements are put in place. A review of current local arrangements for water rescue should also be carried out to consider whether they are adequate in light of the summer’s events and the community risk register. Further, Local Resilience Forums should consider the vulnerability of motorways and trunk roads to flooding and consider the potential for warnings and strategic road clearance and closures to avoid people becoming stranded. Finally, the community risk register should reflect risks to critical infrastructure from flooding and other hazards.

11.9 Recommendations: General

11.9.1 A number of general issues and resultant recommendations have come forward through the SFRA process, and should be taken into account by the Council. These are:

- Not all minor watercourses have had Flood Zone maps produced for them, specifically, those with a catchment area of less than 3km². Any development site located adjacent to an unmapped
Strategic Flood Risk Assessment

Gloucester City Council

A watercourse within Flood Zone 1 should apply an 8m development easement from the top of bank, and a site specific FRA undertaken.

- In the future it is likely that the Environment Agency will take strategic direction over managing inland flood risks. The Local Authority should adopt a leadership and scrutiny role, overseeing flood risk management within the local area.

- Although the flood proofing of utilities should be carried out by the service provider, the Council should review the vulnerability of critical infrastructure in the local area and take steps to work with service providers to initiate retrospective FRAs and subsequent flood proofing works if required.

- Incorporate requirements for flood resistant and resilient refurbishment of flooded properties in high flood risk areas.

- In line with the recommendations of the Pitt Review, it is recommended that the Council produces a Surface Water Management Plan as a tool to improve co-ordination of activities between stakeholders involved in surface water drainage.

11.10 Recommendations: Future Updates to the SFRA

11.10.1 The SFRA should be retained as a ‘living’ document and reviewed on a regular basis in light of better flood risk information and emerging policy guidance. It is recommended that outputs from the following studies are used to update future versions of the SFRA report and associated maps:

- Future Flood Risk Mapping Studies
- Future Flood Risk Management Strategies
- Future groundwater flood risk maps, surface water flood risk maps and reservoir inundations maps. These should also feed into emergency planning documents

11.11 Recommendations: Next Stage of Work

11.11.1 It is recommended that a detailed interrogation of emerging allocations is carried out using the SFRA data and the table supplied in Appendix F. The flood risk posed to each site should be assessed, as well as the presence of defences and culverts. Any issues with the Flood Zones in each development site (mis-alignments etc.) should be identified. The Sequential Test should then be carried out for sites in Flood Zones 2 and 3, or where sites in Flood Zone 1 are affected by other sources of flooding. Where the resolution of flood risk data is poor, appropriate development easements, or further modelling work, should be put identified in consultation with the Environment Agency, to assist the Sequential Test process.

11.11.2 The Environment Agency will require a Level 2 SFRA to be carried out in order to provide a detailed assessment of the risk of flooding from non-fluvial sources, in areas where new development is proposed.

11.11.3 With regard to fluvial sources of flood risk, a Level 2 SFRA will be required where the need to apply the Exception Test is identified (as outlined in Table D3 of PPS25). This cannot be determined until the Sequential Test has been carried out on all proposed development sites. It is recommended that the Level 2 SFRA approach is agreed with the Environment Agency.
11.12 Recommendations: Level 2 SFRA

11.12.1 A Level 2 SFRA should be viewed as rather more site specific than a Level 1 SFRA, addressing flood risk to potential development sites which have gone through the Sequential Test and have been located in Flood Zones 2 or 3, or behind existing defences. The data required for a Level 2 SFRA will therefore depend upon which, if any, of the Council’s final list of preferred sites remain in Flood Zones 2 and 3 following application of the Sequential Test and hence where the Exception Test needs to be applied.

11.12.2 In addition, The Environment Agency will require a Level 2 SFRA to be carried out in order to provide a detailed assessment of the risk of flooding from non-fluvial sources, in areas where new development is proposed.

11.12.3 It is important that a Level 2 SFRA considers the variation of flood risk in a Flood Zone. This increased scope involves a more detailed review of flood hazard (flood probability, flood depth, flood velocity, rate of onset of flooding). If development is to be located behind defences, it would be necessary to model constructional failure of the defence (breach) and water levels rising to exceed the level of the defence (overtopping). In some instances improvements to existing flood defences may be required to manage residual flood risks. Here, the SFRA should include an appraisal of the extent of works to provide or raise the flood defence to appropriate standard.

Level 2 SFRA outputs would include:

- Maps showing distribution of flood risk across zones (depth, velocity, rate and onset of flooding)
- An appraisal of the probability and consequence of breach or overtopping of flood defence infrastructure
- An appraisal of the condition of flood defence infrastructure and likely future policy
- Guidance on appropriate policies for making sites which satisfy parts a) and b) of the Exception Test, and the requirements for satisfying part c) of the Exception Test
- Guidance on the preparation of FRAs for sites with varying flood risk across the Flood Zone

11.12.4 As soon as the need to apply the Exception Test is identified, a Level 2 SFRA should be initiated.
12 Glossary

1) **ABD** - Area Benefiting from Defences. Such areas are defined as areas benefiting from formal flood defences specifically in the event of flooding from rivers with a 1% (1 in 100 year) chance in a given year, or flooding from the sea with a 0.5% (1 in 200 year) chance in any given year. If the defences were not there these areas would be flooded. An area of land may benefit from the presence of a flood defence even if the defence has overtopped, if the presence of the defence means that the flood water does not extend as far as it would if the defence were not there (Source: Environment Agency Policy Number 132_06)

2) **AONB** - Area of Outstanding Natural Beauty. These are areas of countryside with significant landscape value.

3) **BFIHOST** – Base Flow Index derived from the Hydrology Of Soil Types classification as described in the Flood Estimation Handbook

4) **Breach Hazard** – Hazard attributed to flooding caused by the constructional failure of a flood defences or other structure that is acting as a flood defence.

5) **CFMP** – Catchment Flood Management Plan. A CFMP is a high-level strategic plan through which the Environment Agency seeks to work with other key-decision makers within a river catchment to identify and agree long-term policies for sustainable flood risk management.

6) **Core Strategy** - The Development Plan Document which sets the long-term vision and objectives for the area. It contains a set of strategic policies that are required to deliver the vision including the broad approach to development.

7) **Culvert** - A closed conduit used for the conveyance of surface drainage water under a roadway, railroad, canal, or other impediment

8) **Defra** - Department of Environment, Food and Rural Affairs Development

9) **DG5 Register** - A register of properties at risk from sewer flooding maintained by UK water companies.

10) **DPD** - Development Plan Document. A DPD is a spatial planning document within the Council’s Local Development Framework which set out policies for development and the use of land. Together with the Regional Spatial Strategy they form the development plan for the area. They are subject to independent examination.

11) **DPSBAR** – Mean drainage path slope

12) **Dry pedestrian egress** - Routes to and from buildings that will remain dry and allow pedestrian/wheelchair evacuation to dry land in times of flood.

13) **Environment Agency** - The leading public body for protecting and improving the environment in England and Wales.

14) **Environmental Stewardship** - Environmental Stewardship is a new agri-environment scheme which provides funding to farmers and other land managers in England who deliver
Strategic Flood Risk Assessment

Gloucester City Council

effective environmental management on their land. The scheme is intended to build on the
recognised success of the Environmental Sensitive Areas scheme and the countryside
Stewardship Scheme. Flood risk management is among its secondary objectives.

15) **Exception Test** - If, following application of the Sequential Test, it is not possible (consistent
with wider sustainability objectives) to demonstrate that there are no reasonably available
sites in areas with less risk of flooding that would be appropriate to the type of development or
land use proposed, the Exception Test may apply. PPS25 sets out strict requirements for the
application of the Test.

16) **Flood Estimation Handbook (FEH)** - The latest hydrological approach for the estimate of
flood flows in UK.

17) **Flood Defence** – Natural or man-made infrastructure used to reduce the risk of flooding

18) **Flood Risk** – Flood risk is a combination of two components: the chance (or probability) of a
particular flood event and the impact (or consequence) that the event would cause if it
occurred

19) **FRA** – Flood Risk Assessment. Assessment of flood risk posed to a defined area (usually a
new development site) as defined above.

20) **Flood Risk Management** – Flood risk management can reduce the probability of occurrence
through the management of land, river systems and flood defences and reduce the impact
through influencing development on flood risk areas, flood warning and emergency response.

21) **FWD** – Floodline Warnings Direct. FWD is a system maintained by the Environment Agency
which sends out warning messages to homeowners and businesses over the telephone
network when floods are likely.

22) **Flood Risk Vulnerability** - PPS25 provides a vulnerability classification to assess which uses
of land may be appropriate in each flood risk zone.

23) **Formal Flood Defence** - A structure built and maintained specifically for flood defence
purposes.

24) **Flood Zones** - Nationally consistent delineation of ‘high’ and ‘medium’ flood risk, published
on a quarterly basis by the Environment Agency.

25) **Functional Floodplain Zone 3b** - Defined as areas at risk of flooding in the 5% AEP (1 in 20
year) design event. In any one year the chance of a 4% AEP (1 in 20 year) event occurring is
5%.

26) **GIS** – Geographic Information System. GIS is any system which stores geographical data,
such as elevations, location of buildings and extent of flood outlines.

27) **High probability Zone 3a** - Defined as areas at risk of flooding in the 1% AEP (1 in 100 year)
design event. In any one year the chance of a 1% AEP (1 in 100 year) event occurring is 1%.

28) **Informal Flood Defence** - A structure that provides a flood defence function however has not
been built and/or maintained for this purpose (e.g. boundary wall).
29) **Integrated urban drainage** – An integrated approach to surface water management

30) **JFLOW** - A computer river model based on routeing a flood calculated by Flood Estimation Handbook methodology along a river corridor the levels of which are derived from a Side Aperture Radar (SAR) remote sensed Digital Terrain Model.

31) **Land Swapping** - looking for long term opportunities to remove development from areas that flood at present and relocate in lower risk locations which is essentially restoration of the floodplain.

32) **LDD** – Local Development Documents

33) **LiDAR** - Light Detection and Ranging. LiDAR is an airborne terrain mapping technique which uses a laser to measure the distance between the aircraft and the ground.

34) **LDF** - Local Development Framework. The LDF consists of a number of documents which together form the spatial strategy for development and the use of land.

35) **LDS** – Local Development Scheme. A schedule and timetable for production of LDF documents.

36) **Low Probability Zone 1** – The area outside Zone 2. Defined as an area with less that 0.1% AEP (1 in 1000 year) chance of flooding. In any one year the chance of a 1% AEP (1 in 100 year) event occurring is less than 0.1%.

37) **LPA** – Local Planning Authority

38) **Main River** – All watercourses shown on the statutory main river maps held by the Environment Agency and the Department for Environment, Food and Rural Affairs. This can include any structure or appliance for controlling or regulating the flow of water into, in or out of the channel. The Environment Agency has permissive power to carry out works of maintenance and improvement on these rivers.

39) **‘Making Space for Water’ (Defra 2004)** - The Government’s new evolving strategy to manage the risks from flooding and coastal erosion by employing an integrated portfolio of approaches, so as: a) to reduce the threat to people and their property; b) to deliver the greatest environmental, social and economic benefit, consistent with the Government’s sustainable development principles, c) to secure efficient and reliable funding mechanisms that deliver the levels of investment required.

40) **Medium probability Zone 2** - Defined as an area at risk of flooding from flood events that are greater than the 1% AEP (1 in 100 year), and less than the 0.1% AEP (1 in 1000 year) design event. The probability of flooding occurring in this area in any one year is between 1% and 0.1%.

41) **Minor River** - Every river, stream, ditch, drain, cut, dyke, sluice, sewer (other than a public sewer) and passage through which water flows and which does not form part of a main river. The local authority or Internal Drainage Board (IDB) where relevant, has powers for ordinary watercourses.
Strategic Flood Risk Assessment

Gloucester City Council

42) mAOD – Metres Above Ordnance Datum

43) NGR – National Grid Reference

45) OS - Ordnance Survey

46) Ordinary Watercourse (non-main river, minor watercourse) – Any section of watercourse not designated as a Main River.

47) PPG – Policy Planning Guidance. PPG notes are statements of the Government's national policy and principles towards certain aspects of the town planning framework, and have been superseded by Planning Policy Statements in many cases (below).

50) Previously Developed (Brownfield) Land - Land which is or was occupied by a building (excluding those used for agriculture and forestry). It also includes land within the curtilage of the building, for example a house and its garden would be considered to be previously developed land.

51) Residual Risk - The risk which remains after all risk avoidance, reduction and mitigation measures have been implemented.

52) Return Period – The probability of a flood of a given magnitude occurring within any one year e.g. a 1% AEP (1 in 100 year) event has a probability of occurring once in 100 years, or a 1% chance in any one year. However, a 1% AEP (1 in 100 year) event could occur twice or more within 100 years, or not at all.

53) RFRA – Regional Flood Risk Assessment

54) RSS - Regional Spatial Strategy. The RSS for Gloucestershire is the South West RRS, a regional planning policy providing the overarching framework for the preparation of LDFs. It provides a broad development strategy for the South West region up to 2026.

55) Sequential Test - Informed by a SFRA, a planning authority applies the Sequential Test to demonstrate that there are no reasonably available sites in areas with less risk of flooding that would be appropriate to the type of development or land use proposed.

56) SEA - Strategic Environmental Assessment.

57) SFRA - Strategic Flood Risk Assessment. An SFRA is used as a tool by a planning authority to assess flood risk for spatial planning, producing development briefs, setting constraints,
informing sustainability appraisals and identifying locations of emergency planning measures and requirements for flood risk assessments.

58) **SFRM** – Strategic Flood Risk Management. An Environment Agency Framework which facilitates the implementation of [Flood Risk Management](#).

59) **SPD** - Supplementary Planning Document. An SPD provides supplementary guidance to policies and proposals contained within Development Plan Documents. They do not form part of the development plan, nor are they subject to independent examination.

60) **SPR** – Standard percentage runoff from the Hydrology Of Soil Types classification.

61) **SA** - Sustainability Appraisal. An SA is an appraisal of plans, strategies and proposals to test them against broad sustainability objectives.

62) **SoP** – Standard of Protection. The return period against which a defence offers protection.

63) **SSSI** – Site of Special Scientific Interest. SSSIs are designated protected areas in the UK. NNRs and SACs are both SSSIs.

64) **SUDS** – Sustainable Urban Drainage Systems. SUDS are drainage systems which are designed to reduce the impact of urbanisation on the hydrology of a river system.

65) **Sustainable Development** – “Development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (The World Commission on Environment and Development, 1987)

66) **Wrack Mark** – a recorded level following a flood event
13 References

1 DETR Circular 04/00 – Para 18: Planning controls for hazardous substances. www.communities.gov.uk/index.asp?id=1144377

3 Halcrow, River Twyver Strategic Flood Risk Mapping Study, 2006

5 Centre for Ecology & Hydrology http://www.ceh.ac.uk/data/nrfa/index.html

9 Defra/Environment Agency Flood and Coastal Defence R&D Programme; R&D Outputs: Flood Risk to People, Phase 2, FD2321/TR2 Guidance Document, March 2006

11 Jacobs (2004), Strategy for Flood and Erosion Risk Management: Groundwater Flooding Scoping Study (LDS 23). Jacobs, Reading

12 Defra, Flood and Coastal Defence Appraisal Guidance, FCDPAG3 Economic Appraisal; Supplementary Note to operating Authorities – Climate Change Impacts; October 2006

APPENDIX A

Environment Agency Sign-off Letter
APPENDIX B

Map Index
APPENDIX C

Sequential Test Process
APPENDIX D

Flood Zone Information
APPENDIX F

Template to Assist with Sequential Test